首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Dactylella oviparasitica strain 50 applications on sugarbeet cyst nematode (Heterodera schachtii) population densities and plant weights were assessed in four agricultural soils. The fungus was added to methyl iodide-fumigated and nonfumigated portions of each soil. The soils were seeded with Swiss chard. Four weeks later, soils were infested with H. schachtii second-stage juveniles (J2). Approximately 1,487 degree-days after infestation, H. schachtii cyst, egg and J2 numbers and plant weights were assessed. In all four fumigated soils, D. oviparasitica reduced all H. schachtii population densities and increased most of the plant weights compared to the nonamended control soils. In two of the nonfumigated soils (10 and SC), D. oviparasitica reduced H. schachtii population densities and increased most plant weight values compared to the nonamended control soils. For the other two nonfumigated soils (44 and 48), which exhibited pre-existing levels of H. schachtii suppressiveness, fungal applications had relatively little impact on H. schachtii population densities and plant weights. The results from this study combined with those from previous investigations suggest that D. oviparasitica strain 50 could be an effective biological control agent.  相似文献   

2.
Hyphae of Dactylella oviparasitica proliferated rapidly through MeIoidogyne egg masses, and appressoria formed when they contacted eggs. The fungus probably penetrated egg shells mechanically, although chitinase production detected in culture suggested that enzymatic penetration was also possible. In soil, D. oviparasitica invaded egg masses soon after they were deposited on the root surface and eventually parasitized most of the first eggs laid. Occasionally the fungus grew into Meloidogyne females, halting egg production prematurely. The fungus parasitized eggs in the gelatinous matrix or eggs freed from the matrix and placed on agar or in soil. Specificity in nematode egg parasitism was not displayed, for D. oviparasitica parasitized eggs of four Meloidogyne spp., Acrobeloides sp., Heterodera schachtii, and Tylenchulus semipenetrans. In tests in a growth chamber, parasitism by D. oviparasitica suppressed galling on M. incognita-infected tomato plants.  相似文献   

3.
The nematophagous fungus Dactylella oviparasitica is considered the primary cause of a sugar beet cyst nematode (Heterodera schachtii) population suppression in a field at the Agricultural Operations, University of California, Riverside. Parasitism of H. schachtii by the ascomycete D. oviparasitica was studied using both Arabidopsis thaliana (type Landsberg erecta) and cabbage as host plants in gnotobiotic agar culture. Suitability of Arabidopsis as a host for H. schachtii was confirmed using seedlings grown with the nematode in axenic sand culture. Both developing males and females of H. schachtii broke through the Arabidopsis root surface during late juvenile stages and both were susceptible to D. oviparasitica parasitism. In contrast to Arabidopsis, developing juvenile males remained in nearly all observed cases enclosed within the cabbage root tissues while the larger body expansion of the female juveniles caused the root cortex to split; consequently only the latter ones were accessible to the fungus. In the presence of D. oviparasitica, the number of females with eggs was reduced by more than 95% and the number of eggs per female by almost 60% as compared to females developing on plates without the fungus. Viable eggs were not susceptible to parasitism while more than 90% of heat- or cold-killed eggs were rendered susceptible. These observations suggest that parasitism of developing juveniles may be the essential mode of action in the population suppression of H. schachtii.  相似文献   

4.
A simulation model of a single sugarbeet, Beta vulgaris L., plant infected by the sugarbeet cyst nematode, Heterodera schachtii Schmidt, was developed using published information. The model is an interactive computer simulation programmed in FORTRAN. Given initial population densities of the nematode at planting, the model simulates nematode population dynamics and the growth of plant tap and fibrous roots. The driving variable for nematode development and plant growth is temperature.  相似文献   

5.
This study assessed the potential impact of various Fusarium strains on the population development of sugarbeet cyst nematodes. Fungi were isolated from cysts or eggs of Heterodera schachtii Schmidt that were obtained from a field suppressive to that nematode. Twenty-six strains of Fusarium spp. were subjected to a phylogenic analysis of their rRNA-ITS nucleotide sequences. Seven genetically distinct Fusarium strains were evaluated for their ability to influence population development of H. schachtii and crop performance in greenhouse trials. Swiss chard (Beta vulgaris) seedlings were transplanted into fumigated field soil amended with a single fungal strain at 1,000 propagules/g soil. One week later, the soil was infested with 250 H. schachtii J2/100 cm3 soil. Parasitized eggs were present in all seven Fusarium treatments at 1,180 degree-days after fungal infestation. The percentage of parasitism ranged from 17 to 34%. Although the most efficacious F. oxysporum strain 471 produced as many parasitized eggs as occurred in the original suppressive soil, none of the Fusarium strains reduced the population density of H. schachtii compared to the conducive check. This supports prior results that Fusarium spp. were not the primary cause of the population suppression of sugarbeet cyst nematodes at this location.  相似文献   

6.
Greenhouse experiments with two susceptible hosts of Meloidogyne incognita, a dwarf tomato and wheat, led to the identification of a soil in which the root-knot nematode population was reduced 5- to 16-fold compared to identical but pasteurized soil two months after infestation with 280 M. incognita J2/100 cm3 soil. This suppressive soil was subjected to various temperature, fumigation and dilution treatments, planted with tomato, and infested with 1,000 eggs of M. incognita/100 cm3 soil. Eight weeks after nematode infestation, distinct differences in nematode population densities were observed among the soil treatments, suggesting the suppressiveness had a biological nature. A fungal rRNA gene analysis (OFRG) performed on M. incognita egg masses collected at the end of the greenhouse experiments identified 11 fungal phylotypes, several of which exhibited associations with one or more of the nematode population density measurements (egg masses, eggs or J2). The phylotype containing rRNA genes with high sequence identity to Pochonia chlamydosporia exhibited the strongest negative associations. The negative correlation between the densities of the P. chlamydosporia genes and the nematodes was corroborated by an analysis using a P. chlamydosporia-selective qPCR assay.  相似文献   

7.
Field observations have suggested that infection of peanut by Meloidogyne arenaria increases the incidence of southern blight caused by Sclerotium rolfsii. Three factorial experiments in microplots were conducted to determine if interactions between M. arenaria and S. rolfsii influenced final nematode population densities, incidence of southern blight, or pod yield. Treatments included four or five initial population densities of M. arenaria and three inoculum rates of S. rolfsii. Final nematode population densities were affected by initial nematode densities in all experiments (P = 0.01) and by S. rolfsii in one of three experiments (P = 0.01). Incidence of southern blight increased with increasing inoculum rates of S. rolfsii in all experiments and by the presence of the nematodes in one experiment (P = 0.01). Pod yield decreased with inoculation with S. rolfsii in all experiments (P = 0.05) and by M. arenaria in two of three experiments (P = 0.05). In no experiment was the interaction among treatments significant with respect to final nematode population densities, incidence of southern blight, or pod yield (P = 0.05). The apparent disease complex between M. arenaria and S. rolfsii on peanut is due to additive effects of the two pathogens.  相似文献   

8.
In a field experiment, nematicides controlled the disease of sugarbeets caused by Heterodera schachtii and Fusarium oxysporum. Biocides that were both fungicidal and nematicidal also controlled the disease, but sugar yields were no higher than those obtained with the plain nematicides. In greenhouse experiments, the interaction between H. schachtii and F. oxysporam was disadvantageous to the nematode. Damage to sugarbeets was less when the fungus and the nematode were present than when only the nematode was present. The fungus inhibited nematode invasion and development in sugarbeet seedlings, thereby decreasing the number of nematodes that matured about 3-fold.  相似文献   

9.
Thirty-five populations of Heterodera glycines and populations of 15 other Heterodera, Globodera, and Punctodera species were studied morphometrically and some were compared serologically. There was a wide range of each measurement within each nematode population. Except for one soybean cyst nematode population from Indiana, which was a tetraploid and considerably larger than the others, morphometric measurements overlapped. In a discriminant function comparison most of the populations were closely grouped but at least three were rather distinctly separated. Morphometrically H. fici, H. cruciferae, H. schachtii, and H. trifolii were closely associated with H. glycines. Serology indicated a close relationship between H. glycines, H. lespedezae, H. trifolii, H. schachtii, and the Heterodera sp. from Rumex, while H. betulae appeared to be more distantly related.  相似文献   

10.
Invasion of tomato (Lycopersicon esculentum L.) roots by combined and sequential inoculations of Meloidogyne hapla and a tomato population of Heterodera schachtii was affected more by soil temperature than by nematode competition. Maximum invasion of tomato roots, by M. hapla and H. schachtii occurred at 30 and 26 C, respectively. Female development and nematode reproduction (eggs per plant) of M. hapla was adversely affected by H. schachtii in combined inoculations of the two nematode species. Inhibition of M. hapla development and reproduction on tomato roots from combined nematode inoculations was more pronounced as soil temperature was increased over a range of 18-30 C and with prior inoculation of tomato with H. schachtii. M. hapla minimally affected H. schachtii female development, but there was significant reduction in the buildup of H. schachtii when M. hapla inoculation preceded that of H. schachtii by 20 days.  相似文献   

11.
In experiments on competition between Pratylenchus neglectus and Meloidogyne chitwoodi in barley, the species that parasitized the roots first inhibited penetration by the latter species. Prior presence of P. neglectus impeded the development of M. chitwoodi. Pratylenchus neglectus reduced egg production, final population levels, and reproductive index of M. chitwoodi. The reduction was linearly related to initial population densities of P. neglectus. Initial population densities of M. chitwoodi had no effect on final population levels of P. neglectus. Carbon assimilation by barley plants was reduced when either nematode species was present alone, but not when both were present together. Both nematode species assimilated lower amounts of carbon when present together than when present alone. A split-root experiment demonstrated that translocatable chemicals were not involved in the competition between the two species.  相似文献   

12.
Heterodera schachtii, Meloidogyne hapla, and Nacobbus aberrans either alone, or in various combinations with each other, can, when inoculated at a concentration of 12 second-stage juveniles/ cm³ of soil, cause a significant (P = 0.01) suppression of growth of sugarbeet (cv. Tasco AH14) seedlings. M. hapla and H. schachtii decreased growth of sugarbeet more than N. aberrans over a 60-day period. The adverse effect of N. aberrans on the final population/initial population (Pf/Pi) ratio for either M. hapla or H. schachtii was dependent on time, and was more accentuated on that of M. hapla than on that of H. schachtii. Neither M. hapla nor H. schachtii had an adverse effect on the Pf/ Pi ratio of N. aberrans. N. aberrans is considered to be less aggressive on sugarbeet than either H. schachtii or M. hapla. Sections of sugarbeet roots infected simultaneously with H. schachtii and N. aberrans showed scattered vascular elements between the N. aberrans syncytium located in the central part of the root and that of H. schachtii in the peripheral position.  相似文献   

13.
Fine structure of the body wall cuticle of Heterodera schachtii is compared with respect to age and body region of the female. The cuticle is more complex than previously reported. In newly molted females only layers A, B, and C are present, but 4 weeks after the final molt a thin D layer is present between the midbody and base of the cone. This D layer is absent in the cone of H. schachtii, regardless of age. As females age, an additional layer E is produced and includes zones E₁ and E₂. Zone El apparently is unique to H. schachtii, whereas E₂ is likely to be homologous with a similar layer in Atalodera. In the cone of old females (ca. 8 weeks after the final molt) of H. schachtii, the two zones become irregular in shape and comprise bullae. The presence of a thin D layer in Heterodera strengthens the previous hypothesis of a single ancestor of cyst nematodes.  相似文献   

14.
Significant differences (P = 0.05) in nematode reproduction were observed among populations of Heterodera schachtii and weed collections of black nightshade, common lambsquarters, common purslane, redroot-pigweed, shepherdspurse, and wild mustard from Colorado, Idaho, Oregon, and Utah. Colorado weeds supported the greatest nematode development (P = 0.05). Weeds collected from Idaho and Utah were similar with respect to their response to H. schachtii with the exception of shepherdspurse. At increasing soil temperatures, a Utah redroot-pigweed collection showed a higher percent susceptibility to a Utah nematode population than to nematode populations from the other states (P = 0.05). There was a higher percentage of susceptible plants when the weed host population was collected from the same geographical area as the nematode inoculun.  相似文献   

15.
Increased culturing of a tomato population of Heterodera schachtii (UT1C) on tomato for 480 days (eight inoculation periods of 60 days each) significantly increased virulence to ''Stone Improved'' tomato. A synergistic relationship existed between Meloidogyne hapla and H. schaehtii on tomato. A combination of H. schachtii (UTIC) and M. hapla significantly reduced tomato root weights by 65, 64, and 61% below root weights of untreated controls, and single inoculations of M. hapla and H. schachtii, respectively. This corresponded to root reductions of 42, 44, and 46% from a combination of H. schachtii (UT1B) and M. hapla. Antagonism existed between H. schachtii and M. hapla with regard to infection courts and feeding sites. The root-knot galling index dropped from 6.0 with a single inoculation of M. hapla to 4.3 and 3.3 with combined inoculations of M. hapla plus UT1B and M. hapla plus UTIC cyst nematode populations. The pathological virulence of H. schachtii to sugarbeet was not lost by extended culturing on tomato; there were no differences in penetration, maturation, and reproduction between sugarbeet populations continually cultured on sugarbeet and the population continually cultured on tomato.  相似文献   

16.
Five populations of Heterodera schachtii Schm. from Oregon, Idaho, and Utah did not differ significantly in seedling penetration and rate of emergence and virulence. Another Utah H. schachtii population (Utah 2), however, differed from these five populations in all of the above-mentioned characteristics. More H. schachtii larvae of the Utah 2 population than the other populations penetrated sugarbeet seedlings at 10, 15, 20, and 25 C. Root and top weights of sugarbeet plants were signiticantly less when roots were parasitized by the Utah 2 population than when they were parasitized by larvae of the other nematode populations under similar experimental conditions. Also, the period of larval emergence was shorter in the Utah 2 population than in any of the other H. schachtii populations.  相似文献   

17.
Field microplot experiments were conducted from 1995 to 1998 to determine the relationship between fresh shoot weight of stalk-cut broadleaf and shade-grown cigar wrapper tobacco types (Nicotiana tabacum L.) and initial density of Globodera tabacum tabacum second stage juveniles (J2) per cm³ soil. Total shoot weight was negatively correlated with initial nematode densities of 12.3 to 747.3 J2/cm³ soil (r = -0.53 and -0.70 for broadleaf and shade-grown tobacco, respectively). Nonlinear damage functions were used to relate initial G. t. tabacum densities to shoot weight. The models described shoot weight losses of less than 14% or 39% for broadleaf and shade tobacco, respectively, at G. t. tabacum densities below 50 J2/cm³ soil. Total shoot weights were reduced by 40% and 60% of uninfested plots as preplant nematode densities approached maximum levels (>600 J2/cm³ soil) for broadleaf and shade tobacco, respectively. Globodera t. tabacum population increase over a growing season was described by a linear relation on a log/log plot (R² = 0.07 and 0.61 for broadleaf and shade, respectively). These experiments demonstrate that G. t. tabacum can directly reduce shoot weight of stalk-cut broadleaf tobacco. Broadleaf is more tolerant to nematode infection than shade tobacco, as shade tobacco shoot weight reductions were greater at the same initial nematode densities in the same years.  相似文献   

18.
The penetration, development, and reproduction of a California population of the sugarbeet cyst nematode, Heterodera schachtii, was observed on cultivars of cabbage (Brassica oleracea), phacelia (Phacelia tanacetifolia), buckwheat (Fagopyrum esculentum), oilseed radish (Raphanus sativus), and white mustard (Sinapis alba). With the exception of the nonhost, phacelia, all were readily penetrated by second-stage juveniles of H. schachtii. After 38 days at 25 C, no cysts were observed on phacelia cv. Angelia or on the oilseed radish cv. Nemex and Pegletta. Cyst production was low (<2.5 cysts/plant) on the buckwheat cv. Tardo and Prego and most of the oilseed radish cultivars. Cyst production was intermediate (5-14 cysts/plant) on most of the white mustard cultivars, and high on cabbage (20-110 cysts/plant). In microplot studies conducted over 133 days (approx. 450 degree-days, base 8 C), the reproductive index for H. schachtii was greater than 1.0 for cultivars of phacelia, oilseed radish, and white mustard as welt as in fallow treatments, indicating the need for further research on the use of these crops under field conditions.  相似文献   

19.
The reproduction of a Wyoming population of Heterodera schachtii was determined for resistant trap crop radish (Raphanus sativus) and mustard (Sinapis alba) cultivars, and resistant and susceptible sugar beet (Beta vulgaris) cultivars in a greenhouse (21 °C/16 °C) and a growth chamber study (25 °C). Oil radish cultivars also were field tested in 2000 and 2001. In the greenhouse study, reproduction was suppressed similarly by the resistant sugar beet cultivar Nematop and all trap crop cultivars (P ≤ 0.05). In the growth chamber study, the radish cultivars were superior to most of the mustard cultivars in reducing nematode populations. All trap crops showed less reproduction than Nematop (P ≤ 0.05). In both studies, Nematop and all trap crops had lower Pf than susceptible sugar beet cultivars HH50 and HM9155 (P ≤ 0.05). In field studies, Rf values of radish cultivars decreased with increasing Pi of H. schachtii (r² = 0.59 in 2000 and r² = 0.26 in 2001). In 2000, trap crop radish cv. Colonel (Rf = 0.89) reduced nematode populations more than cv. Adagio (Rf = 4.67) and cv. Rimbo (Rf = 13.23) (P ≤ 0.05) when Pi was lower than 2.5 H. schachtii eggs and J2/cm³ soil. There were no differences in reproductive factors for radish cultivars in 2001 (P ≤ 0.05); Rf ranged from 0.23 for Adagio to 1.31 for Commodore for all Pi.  相似文献   

20.
Effect of cover crops intercropped with pineapple (Ananas comosus) on Rotylenchulus reniformis population densities and activity of nematode-trapping fungi (NTF) were evaluated in two cycles of cover crop and pineapple. Sunn hemp (Crotalaria juncea), rapeseed (Brassica napus), African marigold (Tagetes erecta), or weeds were intercropped with pineapples. Beds planted with sunn hemp or rapeseed had lower population densities of R. reniformis than African marigold, weeds, or pineapple plots during cover crop growth, and the subsequent pineapple-growing periods. Rapeseed was a good host to Meloidogyne javanica and resulted in high population densities of M. javanica in the subsequent pineapple crop. Fireweed (Erigeron canadensis) occurred commonly and was a good host to R. reniformis. Bacterivorous nematode population densities increased (P ≤ 0.05) most in sunn hemp, especially early after planting. Nematode-trapping fungi required a long period to develop measurable population densities. Population densities of NTF were higher in cover crops than weeds or pineapples during the first crop cycle (P < 0.05). Although pineapple produced heavier fruits following sunn hemp than in the other treatments (P < 0.05), commercial yields were not different among rapeseed, weed, and sunn hemp treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号