首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three 5S rRNA-binding ribosomal proteins (L5, L18, TL5) of extremely thermophilic bacterium Thermus thermophilushave earlier been isolated. Structural analysis of their complexes with rRNA requires identification of their binding sites in the 5S rRNA. Previously, a TL5-binding site has been identified, a TL5–RNA complex crystallized, and its structure determined to 2.3 Å. The sites for L5 and L18 were characterized, and two corresponding 5S rRNA fragments constructed. Of these, a 34-nt fragment specifically interacted with L5, and a 55-nt fragment interacted with L5, L18, and with both proteins. The 34-nt fragment–L5 complex was crystallized; the crystals are suitable for high-resolution X-ray analysis.  相似文献   

2.
The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.  相似文献   

3.
The effects of amino acid replacements in the RNA-binding sites of homologous ribosomal proteins TL5 and L25 (members of the CTC family) on ability of these proteins to form stable complexes with ribosomal 5S RNA were studied. It was shown that even three simultaneous replacements of non-conserved amino acid residues by alanine in the RNA-binding site of TL5 did not result in noticeable decrease in stability of the TL5-5S rRNA complex. However, any replacement among five conserved residues in the RNA-binding site of TL5, as well as of L25 resulted in serious destabilization or complete impossibility of complex formation. These five residues form an RNA-recognition module in TL5 and L25. These residues are strictly conserved in proteins of the CTC family. However, there are several cases of natural replacements of these residues in TL5 and L25 homologs in Bacilli and Cyanobacteria, which are accompanied by certain changes in the CTC-binding site of 5S rRNAs of the corresponding organisms. CTC proteins and specific fragments of 5S rRNA of Enterococcus faecalis and Nostoc sp. were isolated, and their ability to form specific complexes was tested. It was found that these proteins formed specific complexes only with 5S rRNA of the same organism. This is an example of coevolution of the structures of two interacting macromolecules.  相似文献   

4.
Two recombinant proteins of the CTC family were prepared: the general stress protein CTC from Bacillus subtilis and its homolog from Aquifex aeolicus. The general stress protein CTC from B. subtilis forms a specific complex with 5S rRNA and its stable fragment of 60 nucleotides, which contains internal loop E. The ribosomal protein TL5 from Thermus thermophilus, which binds with high affinity to 5S rRNA in the loop E region, was also shown to replace the CTC protein from B. subtilis in its complexes with 5S rRNA and its fragment. The findings suggest that the protein CTC from B. subtilis binds to the same site on 5S rRNA as the protein TL5. The protein CTC from A. aeolicus, which is 50 amino acid residues shorter from the N-terminus than the proteins TL5 from T. thermophilus and CTC from B. subtilis, does not interact with 5S rRNA.  相似文献   

5.
6.
5S rRNA-protein complex has been reconstituted from 5S rRNA and total protein of large (L) ribosomal subunit of Escherichia coli. The complex consists of 5S rRNA and 3 proteins only: L5, L18, L25. A water-soluble carbodiimide [N-cyclohexyl-N'-(2-morpholinoethyl)-carbodiimide-methyl-p-toluolsulp honate] cross-links L18 to 5S rRNA at pH 7.2 and L25 to 5S rRNA at pH 7.7. This pH-dependence of cross-linked proteins is a consequence of the difference in stability of the initial complex: the complex has all three proteins at pH 7.7 but L18 mainly at pH 7.2. It has been shown that L18 stimulates the chemical modification of U87 and U89 residues of 5S rRNA by carbodiimide. A model of L18-5S rRNA complex has been proposed.  相似文献   

7.
8.
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis.  相似文献   

9.
In this work we show for the first time that the overproduced N-terminal fragment (residues 1-91) of ribosomal protein TL5 binds specifically to 5S rRNA and that the region of this fragment containing residues 80-91 is a necessity for its RNA-binding activity. The fragment of Escherichia coli 5S rRNA protected by TL5 against RNase A hydrolysis was isolated and sequenced. This 39 nucleotides fragment contains loop E and helices IV and V of 5S rRNA. The isolated RNA fragment forms stable complexes with TL5 and its N-terminal domain. Crystals of TL5 in complex with the RNA fragment diffracting to 2.75 A resolution were obtained.  相似文献   

10.
J Kimura  M Kimura 《FEBS letters》1987,210(1):85-90
The complete amino acid sequences of the 5 S rRNA binding proteins L5 and L18 isolated from ribosomes of the moderate thermophile Bacillus stearothermophilus are presented. This has been achieved by the sequence analysis of peptides derived by enzymatic digestions with trypsin, chymotrypsin, pepsin, and Staphylococcus aureus protease, as well as by chemical cleavage with cyanogen bromide. The proteins L5 and L18 consist of 179 and 120 amino acid residues, and have Mr values of 20,163 and 13,473, respectively. A comparison of the sequences with their counterparts from the Escherichia coli ribosome reveals 59% identical residues for L5, and 53% for L18. For both proteins, the distribution of conserved regions is not random along the protein chains: some regions are highly conserved while others are not. The regions which are conserved during evolution may be important for the interaction with the 5 S rRNA molecule.  相似文献   

11.
Previously we described an in vitro selection variant abbreviated SERF (in vitro selection from random rRNA fragments) that identifies protein binding sites within large RNAs. With this method, a small rRNA fragment derived from the 23S rRNA was isolated that binds simultaneously and independently the ribosomal proteins L4 and L24 from Escherichia coli. Until now the rRNA structure within the ternary complex L24-rRNA-L4 could not be studied due to the lack of an appropriate experimental strategy. Here we tackle the issue by separating the various complexes via native gel-electrophoresis and analyzing the rRNA structure by in-gel iodine cleavage of phosphorothioated RNA. The results demonstrate that during the transition from either the L4 or L24 binary complex to the ternary complex the structure of the rRNA fragment changes significantly. The identified protein binding sites are in excellent agreement with the recently reported crystal structure of the 50S subunit. Because both proteins play a prominent role in early assembly of the large subunit, the results suggest that the identified rRNA fragment is a key element for the folding of the 23S RNA during early assembly. The introduced in-gel cleavage method should be useful when an RNA structure within mixed populations of different but related complexes should be studied.  相似文献   

12.
Of the three proteins, L5, L18 and L25, which bind to 5S RNA, the former two effect the interaction of 5S RNA with 23S RNA. We have used trypsin as a probe to investigate the roles of the proteins in this RNA-RNA assembly, with the following results: (1) In complexes with 5S RNA, the highly basic N-terminal region of L18 is accessible to trypsin. This accessibility is unaffected by L25. However, its presence is essential for stimulating L5 binding. (2) In 5S RNA-protein-23S RNA complexes proteins L5 and L18 are both strongly resistant to proteolysis. (3) No 5S RNA-23S RNA complex formation occurs in the presence of L5 and the C-terminal L18 fragment. Two possible models for the mechanism of RNA-RNA assembly are proposed.  相似文献   

13.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

14.
In bacteria, the expression of ribosomal proteins is often feedback-regulated at the translational level by the binding of the protein to its own mRNA. This is the case for L20, which binds to two distinct sites of its mRNA that both resemble its binding site on 23 S rRNA. In the present work, we report an NMR analysis of the interaction between the C-terminal domain of L20 (L20C) and both its rRNA- and mRNA-binding sites. Changes in the NMR chemical shifts of the L20C backbone nuclei were used to show that the same set of residues are modified upon addition of either the rRNA or the mRNA fragments, suggesting a mimicry at the atomic level. In addition, small angle x-ray scattering experiments, performed with the rRNA fragment, demonstrated the formation of a complex made of two RNAs and two L20C molecules. A low resolution model of this complex was then calculated using (i) the rRNA/L20C structure in the 50 S context and (ii) NMR and small angle x-ray scattering results. The formation of this complex is interesting in the context of gene regulation because it suggests that translational repression could be performed by a complex of two proteins, each interacting with the two distinct L20-binding sites within the operator.  相似文献   

15.
Ciganda M  Williams N 《PloS one》2012,7(1):e30029
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC.  相似文献   

16.
Ribosomal protein L5 binds specifically to 5S rRNA to form a complex that is a precursor to 60S subunit assembly in vivo. Analyses in yeast cells, mammalian cells, and Xenopus embryos have shown that the accumulation of L5 is not coordinated with the expression of other ribosomal proteins. In this study, the primary structure and developmental expression of Xenopus ribosomal protein L5 were examined to determine the basis for its distinct regulation. These analyses showed that L5 expression could either coincide with 5S rRNA synthesis and ribosome assembly or be controlled independently of these events at different stages of Xenopus development. L5 synthesis during oogenesis was uncoupled from the accumulation of 5S rRNa but coincided with subunit assembly. In early embryos, the inefficient translation of L5 mRNA resulted in the accumulation of a stable L5-5S rRNA complex before ribosome assembly at later stages of development. Additional results demonstrated that L5 protein synthesized in vitro bound specifically to 5S rRNA.  相似文献   

17.
Eukaryotic 5S rRNA hybridizes specifically with 18S rRNA in vitro to form a stable intermolecular RNA:RNA hybrid. We have used 5S rRNA/18S rRNA fragment hybridization studies coupled with ribonuclease digestion and primer extension/chain termination analysis of 5S rRNA:18S rRNA hybrids to more completely map those mouse 5S rRNA and 18S rRNA sequences responsible for duplex formation. Fragment hybridization analysis has defined a 5'-terminal region of 5S rRNA (nucleotides 6-27) which base-pairs with two independent sequences in 18S rRNA designated Regions 1 (nucleotides 1157-1180) and 2 (nucleotides 1324-1339). Ribonuclease digestion of isolated 5S rRNA:18S rRNA hybrids with both single-strand- and double-strand-specific nucleases supports the involvement of this 5'-terminal 5S rRNA sequence in 18S rRNA hybridization. Primer extension/chain termination analysis of isolated 5S rRNA:18S rRNA hybrids confirms the base-pairing of 5S rRNA to the designated Regions 1 and 2 of 18S rRNA. Using these results, 5S rRNA:18S rRNA intermolecular hybrid structures are proposed. Comparative sequence analysis revealed the conservation of these hybrid structures in higher eukaryotes and the same but smaller core hybrid structures in lower eukaryotes and prokaryotes. This suggests that the 5S rRNA:16S/18S rRNA hybrids have been conserved in evolution for ribosome function.  相似文献   

18.
19.
We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to bind 5S rRNA in Trypanosoma brucei. These two proteins are nearly identical, with one major difference, an 18-amino-acid insert in the N-terminal region of p37, as well as three minor single-amino-acid differences. Homologues to p34 and p37 have been found only in other trypanosomatids, suggesting that these proteins are unique to this ancient family. We have employed RNA interference (RNAi) studies in order to gain further insight into the interaction between p34 and p37 with 5S rRNA in T. brucei. In our p34/p37 RNAi cells, decreased expression of the p34 and p37 proteins led to morphological alterations, including loss of cell shape and vacuolation, as well as to growth arrest and ultimately to cell death. Disruption of a higher-molecular-weight complex containing 5S rRNA occurs as well as a dramatic decrease in 5S rRNA levels, suggesting that p34 and p37 serve to stabilize 5S rRNA. In addition, an accumulation of 60S ribosomal subunits was observed, accompanied by a significant decrease in overall protein synthesis within p34/p37 RNAi cells. Thus, the loss of the trypanosomatid-specific proteins p34 and p37 correlates with a diminution in 5S rRNA levels as well as a decrease in ribosome activity and an alteration in ribosome biogenesis.  相似文献   

20.
The effects of ribosomal proteins L18, L25 and L5 on the conformation of 5S RNA have been studied by circular dichroism and temperature dependent ultraviolet absorbance. The circular dichroism spectrum of native 5S RNA is characterized in the near ultraviolet by a large positive band at 267 nm and a small negative band at 298 nm. The greatest perturbation in the spectrum was produced by protein L18 which induced a 20% increase in the 267 nm band and no change in the 298 nm band. By contrast, protein L25 caused a small decrease in both bands. No effect was observed with protein L5. Simultaneous binding of proteins L18 and L25 resulted in CD changes equivalent to the sum of their independent effects. The UV absorbance thermal denaturation profile of the 5S RNA L18 complex lacked the pre-melting behavior characteristic of 5S RNA. Protein L25 had no effect on the 5S RNA melting profile. We concluded that protein L18 increases the secondary, and possible the tertiary structure of 5S RNA, and exerts a minor stabilizing effect on its conformation while protein L25 causes a small decrease in 5S RNA secondary structure. The implications of these findings for ribosome assembly and function are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号