首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neocallimastix frontalis PN-1 utilized the soluble sugars D-glucose, D-cellobiose, D-fructose, maltose, sucrose, and D-xylose for growth. L-Arabinose, D-galactose, D-mannose, and D-xylitol did not support growth of the fungus. Paired substrate test systems were used to determine whether any two sugars were utilized simultaneously or sequentially. Of the paired monosaccharides tested, glucose was found to be preferentially utilized compared with fructose and xylose. The disaccharides cellobiose and sucrose were preferentially utilized compared with fructose and glucose, respectively, an cellobiose was also the preferred substrate compared with xylose. Xylose was the preferred substrate compared with maltose. In further incubations, the fungus was grown on the substrate utilized last in the two-substrate tests. After moderate growth was attained, the preferred substrate was added to the culture medium. Inhibition of nonpreferred substrate utilization by the addition of the preferred substrate was taken as evidence of catabolite regulation. For the various combinations of substrates tested, fructose and xylose utilization was found to be inhibited in the presence of glucose, indicating that catabolite regulation was involved. No clear-cut inhibition was observed with any of the other substrate combinations tested. The significance of these findings in relation to rumen microbial interactions and competitions is discussed.  相似文献   

2.
The effects of bacterial fermentation products on cellulose degradation by the rumen fungus Neocallimastix frontalis have been investigated. H2, formate, lactate and ethanol were strong inhibitors, particularly at high concentrations. Acetate and malate also inhibited, whereas succinate had a variable effect. Butyrate and propionate had no inhibitory effects.  相似文献   

3.
The rumen anaerobic fungus Neocallimastix frontalis was grown on cellulosic substrates, and the cellular distribution and types of glycosidases produced by the organism were studied. Fungal cultures were fractionated into extracellular, insoluble (membrane), and intracellular fractions and assayed for glycosidase activity by using Avicel, carboxymethylcellulose, xylan, starch, polygalacturonic acid, and the p-nitrophenyl derivatives of galactose, glucose, and xylose as substrates. Enzymic activity was highest in the extracellular fraction; however, the membrane fraction also displayed appreciable activity. The intracellular fraction was inactive towards all substrates. Polygalacturonic acid was the only substrate not hydrolyzed by the active fractions, indicating that pectinase was absent. The results show that N. frontalis, a common rumen anaerobic fungus, produces enzymes for degrading cellulose and hemicellulose, key components of plant fiber.  相似文献   

4.
The rumen anaerobic fungus Neocallimastix frontalis was grown on cellulosic substrates, and the cellular distribution and types of glycosidases produced by the organism were studied. Fungal cultures were fractionated into extracellular, insoluble (membrane), and intracellular fractions and assayed for glycosidase activity by using Avicel, carboxymethylcellulose, xylan, starch, polygalacturonic acid, and the p-nitrophenyl derivatives of galactose, glucose, and xylose as substrates. Enzymic activity was highest in the extracellular fraction; however, the membrane fraction also displayed appreciable activity. The intracellular fraction was inactive towards all substrates. Polygalacturonic acid was the only substrate not hydrolyzed by the active fractions, indicating that pectinase was absent. The results show that N. frontalis, a common rumen anaerobic fungus, produces enzymes for degrading cellulose and hemicellulose, key components of plant fiber.  相似文献   

5.
Abstract An extracellular cellulase which was highly active in solubilizing the highly hydrogen bond-ordered cellulose in cotton fibre was found in a culture filtrate of the anaerobic fungus, Neocallimastix frontalis , isolated from the rumen of a sheep. The cellulase was several-fold more active in solubilizing cotton fibre per unit of endo-1,4-β-glucanase than the cellulase of the aerobic fungus Trichoderma reesei mutant strain C-30, which is one of the most active cellulases isolated so far.  相似文献   

6.
Cellulase production was examined in two strains of Neocallimastix frontalis, namely, PN-1 isolated from the ovine rumen, and PN-2 from the bovine rumen. For both strains, carboxymethylcellulase (CMCase) had a pH optimum of 6.0 and a temperature optimum of 50 degrees C. CMCase resided mainly in the culture fluid, and activities up to 170 U ml-1 (1 U represents 1 microgram of glucose equivalents released per min) were obtained for cultures grown on 2.5 mg of cellulose ml-1. For resting cultures of strain PN-1, the yield of CMCase increased from 9.9 X 10(3) to 10.4 X 10(4) U per g of cellulose degraded, as the initial cellulose concentration decreased from 10 to 0.58 mg ml-1. The range for PN-2 was 8.1 X 10(3) to 11 X 10(4) U g-1. Shaking cultures improved yields for strain PN-1 but not for PN-2. Decreased CMCase production at high initial cellulose concentrations concurred with accumulation of glucose, and addition of glucose (4 mg ml-1) to cultures grown on low cellulose in which none of the sugar accumulated repressed CMCase. Adsorption of CMCase was excluded as a likely explanation for decreased yields at high initial cellulose as only a low proportion (less than 20%) of the enzyme was adsorbed onto the growth substrate. Exoglucanase, measured with alkali-treated Sigmacell or Avicel, gave low levels of activity in the culture fluid (less than 2 U ml-1) and did not appear to be associated with the fungal rhizoid, as treatment with various solubilizing agents failed to give increased activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cellulase production was examined in two strains of Neocallimastix frontalis, namely, PN-1 isolated from the ovine rumen, and PN-2 from the bovine rumen. For both strains, carboxymethylcellulase (CMCase) had a pH optimum of 6.0 and a temperature optimum of 50 degrees C. CMCase resided mainly in the culture fluid, and activities up to 170 U ml-1 (1 U represents 1 microgram of glucose equivalents released per min) were obtained for cultures grown on 2.5 mg of cellulose ml-1. For resting cultures of strain PN-1, the yield of CMCase increased from 9.9 X 10(3) to 10.4 X 10(4) U per g of cellulose degraded, as the initial cellulose concentration decreased from 10 to 0.58 mg ml-1. The range for PN-2 was 8.1 X 10(3) to 11 X 10(4) U g-1. Shaking cultures improved yields for strain PN-1 but not for PN-2. Decreased CMCase production at high initial cellulose concentrations concurred with accumulation of glucose, and addition of glucose (4 mg ml-1) to cultures grown on low cellulose in which none of the sugar accumulated repressed CMCase. Adsorption of CMCase was excluded as a likely explanation for decreased yields at high initial cellulose as only a low proportion (less than 20%) of the enzyme was adsorbed onto the growth substrate. Exoglucanase, measured with alkali-treated Sigmacell or Avicel, gave low levels of activity in the culture fluid (less than 2 U ml-1) and did not appear to be associated with the fungal rhizoid, as treatment with various solubilizing agents failed to give increased activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) production was investigated in the ruminal anaerobic fungus Neocallimastix frontalis. The enzyme was released principally into the culture fluid and had pH and temperature optima of 5.5 and 55 degrees C, respectively. In the presence of low concentrations of substrate, the enzyme was stabilized at 50 degrees C. Xylobiose was the principal product of xylanase action, with lesser amounts of longer-chained xylooligosaccharides. No xylose was detected, indicating that xylobiase activity was absent. Activities of xylanase up to 27 U ml-1 (1 U represents 1 micromol of xylose equivalents released min-1) were obtained for cultures grown on xylan (from oat spelt) at 2.5 mg ml-1 in shaken cultures. No growth occurred in unshaken cultures. Xylanase production declined with elevated concentrations of xylan (less than 2.5 mg ml-1), and this was accompanied by an accumulation of xylose and, to a lesser extent, arabinose. Addition of either pentose to cultures grown on low levels of xylan in which neither sugar accumulated suppressed xylanase production, and in growth studies with the paired substrates xylan-xylose, active production of the enzyme occurred during growth on xylan only after xylose had been preferentially utilized. When cellobiose, glucose, and xylose were tested as growth substrates for the production of xylanase (each initially at 2.5 mg ml-1), they were found to be less effective than xylan, and use of xylan from different origins (birch wood or larch wood) as the growth substrate or in the assay system resulted in only marginal differences in enzyme activity. However, elevated production of xylanase occurred during growth on crude hemicellulose (barley straw leaf). The results are discussed in relation to the role of the anaerobic fungi in the ruminal ecosystem, and the possible application of the enzyme in bioconversion processes is also considered.  相似文献   

9.
Xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) production was investigated in the ruminal anaerobic fungus Neocallimastix frontalis. The enzyme was released principally into the culture fluid and had pH and temperature optima of 5.5 and 55 degrees C, respectively. In the presence of low concentrations of substrate, the enzyme was stabilized at 50 degrees C. Xylobiose was the principal product of xylanase action, with lesser amounts of longer-chained xylooligosaccharides. No xylose was detected, indicating that xylobiase activity was absent. Activities of xylanase up to 27 U ml-1 (1 U represents 1 micromol of xylose equivalents released min-1) were obtained for cultures grown on xylan (from oat spelt) at 2.5 mg ml-1 in shaken cultures. No growth occurred in unshaken cultures. Xylanase production declined with elevated concentrations of xylan (less than 2.5 mg ml-1), and this was accompanied by an accumulation of xylose and, to a lesser extent, arabinose. Addition of either pentose to cultures grown on low levels of xylan in which neither sugar accumulated suppressed xylanase production, and in growth studies with the paired substrates xylan-xylose, active production of the enzyme occurred during growth on xylan only after xylose had been preferentially utilized. When cellobiose, glucose, and xylose were tested as growth substrates for the production of xylanase (each initially at 2.5 mg ml-1), they were found to be less effective than xylan, and use of xylan from different origins (birch wood or larch wood) as the growth substrate or in the assay system resulted in only marginal differences in enzyme activity. However, elevated production of xylanase occurred during growth on crude hemicellulose (barley straw leaf). The results are discussed in relation to the role of the anaerobic fungi in the ruminal ecosystem, and the possible application of the enzyme in bioconversion processes is also considered.  相似文献   

10.
Cryopreservation of the anaerobic rumen fungus Neocallimastix patriciarum   总被引:1,自引:1,他引:0  
A rapid extraction and purification procedure is described for the preparation of toxic peptides from freshwater blooms and laboratory isolates of Microcystis aeruginosa . Extraction with methanol/butanol, followed by C18 cartridge concentration; gel filtration and high performance liquid chromatography yields discrete toxin peaks. Elution profiles for the laboratory isolates and bloom extracts are compared and the applicability of the method for detecting cyanobacterial toxins in natural waters is discussed.  相似文献   

11.
The effect of fibrolytic and saccharolytic rumen bacteria on xylanolysis by the rumen fungus Neocallimastix frontalis has been investigated. In cocultivations N. frontalis interacted synergistically with Bacteroides ruminicola, Succinivibrio dextrin-osolvens and Selenomonas ruminantium during xylan utilization. Xylan utilization decreased in cocultures containing Lachnospira multiparus or Streptococcus bovis. Ruminococcus flavefaciens appeared to inhibit fungal growth.  相似文献   

12.
13.
The purification of beta-xylosidase (beta-D-xyloside xylohydrolase, EC 3.2.1.37) from Neocallimastix frontalis was performed by ammonium sulphate precipitation, ion exchange chromatography, gel filtration and preparative isoelectric focusing. The enzyme had a molecular mass of 180,000 Da, an isoelectric point at pH 4.35 and catalysed the hydrolysis of p-nitrophenyl-beta-D-xylopyranoside optimally at pH 6.5 and 35 degrees C with a Km of 0.33 mg ml-1. The enzymatic activity was strongly increased by the presence of Ca2+, Mn2+, Zn2+, Co2+ or Mg2+ and completely inhibited by Hg2+ and p-chloromercuribenzoate. The purified protein also had a low level of xylanase activity.  相似文献   

14.
Studies on the rumen flagellate Neocallimastix frontalis.   总被引:30,自引:0,他引:30  
The vast increase in the population density of the rumen flagellate Neocallimastix frontalis shortly after the host animal has commenced eating is caused by stimulation of a reproductive body on a vegetative phase of the organism to differentiate and liberate the flagellates. The stimulant is a component of the host's diet. The vegetative stage of N. frontalis bears a strong morphological resemblance to that of certain species of aquatic phycomycete fungi, and consists of a reproductive body borne on a single, much branched rhizoid. The flagellates liberated in vivo within 15 to 45 min of feeding lose their motility within I h and develop into the vegetative phase, thus producing a rapid decrease in population density of the flagellates. Conditions for maximum flagellate production are similar to those occurring in the rumen: pH 6-5, 39 degrees C, absence of O2, presence of CO2. Differentiation of the reproductive body is inhibited by compounds affecting membrane structure and function, but not by inhibitors of protein synthesis. The organism was cultured in vitro in an undefined medium in the absence of bacteria or other flagellates.  相似文献   

15.
16.
Two beta-endoxylanases produced by Neocallimastix frontalis have been purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. Xylanase I is a nonglycosylated protein with an apparent molecular mass of 45 kDa. Xylanase II is a glycoprotein with an apparent molecular mass of 70 kDa. The pH optima of these enzymes were 5.5 and 6, respectively, and the temperature optimum was 55 degrees C for each enzyme. The endo mode of action of the enzymes was revealed by thin-layer chromatography of xylan hydrolysates. Antibodies raised against each purified protein exhibited no cross-reaction, confirming the biochemical specificities of the enzymes. Both enzymes exhibited carboxymethyl cellulase activity, and xylanase I was absorbed on crystalline cellulose, indicating that these enzymes might belong to the F family of beta-1,4-glycanases.  相似文献   

17.
Three isolates of Neocallimastix frontalis grown in pure culture with glucose as substrate differed in their response to the presence of lasalocid in the growth medium. For two strains (RE1 and RK21) hydrogen production and glucose uptake were reduced to 50% or less of the control values in the presence of lasalocid at 0–25 μg/ ml. A third strain (PNK2) retained significant fermentative ability in the presence of at least four times this amount of lasalocid. Lasalocid was rather less inhibitory to the solubilization of straw by these fungi, PNK2 again providing the most resistant strain. It is concluded that the use of lasalocid in ruminant feeds is likely to have a strain selective effect on the rumen population of Neocallimastix.  相似文献   

18.
Protein and cellulose activities were measured in culture supernatants of the anaerobic ruminal fungus Neocallimastix frontalis EB188 established in glucose medium and switched to either glucose, cellobiose, or cellulose media. Polyacrylamide gel electrophoresis was used to show differences caused by changing medium carbon source. Culture supernatants contained proteins with molecular weights ranging from greater than 116,000 to about 19,000. Low levels of cellulose activity were evident in glucose-grown cultures. Increased amounts of slowly migrating cellulase activities appeared in the supernatants of glucose-grown cultures switched to cellulose. Cellulase activities which reacted differentially during colorimetric and in situ assays were produced. Isoelectric points of cellulase activities varied from 3.7 to 8.3, and activities possessed optimal pHs of between 5.9 and 6.5.  相似文献   

19.
Hydrogenosomes in the rumen fungus Neocallimastix patriciarum.   总被引:11,自引:1,他引:10       下载免费PDF全文
Sedimentable hydrogenase activity was demonstrated in cell-free extracts from both zoospores and vegetative growth of the anaerobic rumen fungus Neocallimastix patriciarum. Electron micrographs of the fraction enriched in hydrogenase activity contained finely granular microbody-like organelles, about 0.5 micron in diameter and having an equilibrium density of about 1.2 g X ml-1 in sucrose, 1.12 g X ml-1 in Percoll and 1.27-1.28 g X ml-1 in Metrizamide. These organelles, which are sedimentable at 10(5) g-min, bear no similarity to mitochondria, but are morphologically similar to hydrogen-evolving organelles possessed by certain anaerobic protozoa and termed 'hydrogenosomes'. Other typical hydrogenosomal enzymes, namely 'malic' enzyme, pyruvate:ferredoxin oxidoreductase and NADPH:ferredoxin oxidoreductase, were enriched in the same particle fraction as hydrogenase. The synthesis of pyruvate:ferredoxin oxidoreductase was found to be suppressed when the organism was cultured under an atmosphere of CO2, and an alternative pathway is proposed for growth under these conditions.  相似文献   

20.
A grass + fishmeal ruminant feed was incubated for 7 d in a mineral salts medium with the non-proteolytic rumen bacteria Bacteroides succinogenes, Ruminococcus flavefaciens, Megasphaera elsdenii and proteolytic strains of Bacteroides ruminicola, Selenomonas ruminantium and Streptococcus bovis in the presence and absence of the anaerobic fungus Neocallitnastix frontalis . The fungus increased the dry matter digestion from 65·0 to 69·4%, and more than doubled the proteolytic activity of the culture filtrate. However, a greater difference was observed with the solid material, where the proteolytic activity increased from 0·71 to 6·89 mg 14C-casein hydrolysed/g/h, due mainly to EDTA-sensitive fungal protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号