首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress is a limiting factor in assisted reproduction in wild animals maintained in captivity and measures to reduce it should improve reproductive success. The effect of the long-acting neuroleptic (LAN) perphenazine enanthate was assessed on ovarian stimulation for the recovery of immature oocytes from Mohor gazelle (Gazella dama mhorr) and their subsequent in vitro maturation, fertilization and embryo culture. The viability of embryos after transfer was also examined. Perphenazine enanthate decreased activity levels and facilitated handling of treated animals when compared to controls. LAN-treated animals showed a more regular pattern of respiratory and heart rates and body temperature than controls; no major differences were found in hematological and biochemical parameters between groups. Perphenazine-treated females had lower plasma cortisol levels during the days of intense handling. No significant differences were found in the number of punctured follicles and recovered oocytes between groups. The percentage of mature oocytes per female was significantly higher in the LAN-group. Fertilization and cleavage rates were not significantly different between groups. Embryos developed in culture but none reached the blastocyst stage, and those transferred to the oviduct of synchronized recipients did not develop to term. In conclusion, treatment of females with perphenazine enanthate during ovarian stimulation did not have negative effects on maturation, fertilization and embryo development in vitro. Moreover, an increase in oocyte maturation rate per female was observed. Thus, the use of LANs could be useful to alleviate the effects of handling-stress during assisted reproductive procedures in wild ungulates.  相似文献   

2.
The objectives of the present study were to achieve 1) oocyte maturation, 2) oocyte competence of fertilization, and 3) oocyte competence of embryogenesis with oocytes from primordial follicles obtained from cryopreserved newborn mouse ovaries by using a two-step method. In the first step, frozen-thawed newborn mouse ovaries were transplanted under the kidney capsule of recipients for the initiation of growth from the primordial follicle stage on. In the second step, growing preantral follicles in the ovarian grafts were recovered and cultured. The results demonstrated that primordial follicles were able to be recruited to preantral follicles during the period of transplantation, and preantral follicles could be mechanically isolated from ovarian grafts. Under the present in vitro culture conditions, 85.8% of the isolated follicles (n = 332) from ovarian grafts survived the 12-day in vitro culture process, 84.9% of the recovered oocytes (n = 285) were germinal vesicle breakdown (GVBD)-competent, and 76% of the oocytes that underwent GVBD (n = 242) developed to the metaphase II (MII) stage. In the in vitro fertilization experiments, 75.4% of 142 inseminated MII oocytes underwent fertilization and cleavage to the 2-cell stage. Subsequently, 79.7% of the 2-cell-stage embryos (n = 69) progressed to the late morula-early blastocyst stage. Transfer of late morula-early blastocyst embryos resulted in the production of live offspring. From our experiments, it may be concluded that in vivo maturation by grafting followed by in vitro maturation of frozen-thawed primordial follicles can restore fertility in mice. This model could be useful for a similar application in the human.  相似文献   

3.
Term development of caprine embryos derived from immature oocytes in vitro   总被引:3,自引:0,他引:3  
Ovaries were surgically removed from female goats (Toggenburg, Nubian and Saanen breeds). Oocytes were collected by follicular aspiration or after ovaries were minced, then matured in mTCM-199 with 100 mug LH + 0.5 mug FSH + 1.0 mug estradiol 17-beta/ml for 27 h prior to in vitro fertilization (17). Although more oocytes were made available by mincing than by aspiration, higher proportions of aspirated oocytes were fertilized and developed to morulae. Proportions that fertilized and reached morulae were 82 102 (80.4%) and 50 102 (49.0%) versus 77 126 (61.1%) and 27 126 (21.4%) for oocytes obtained by aspiration and after ovarian mincing, respectively (P<0.05). Proportions of inseminated ova undergoing cleavage and continuing development to the morula stage differed significantly (P<0.05) among 5 co-culture treatment groups, with higher proportions of cleavage (23 27 , 85.2%) and morulae (14 27 , 51.9%) obtained by co-culture on caprine cumulus cells (cCC). Some oocytes reached the blastocyst stage (4 54 , 7.4%) following oocyte collection by aspiration and culture on caprine oviduct epithelial cells (cOEC). After 4- and 8-cell stage embryos obtained by aspiration and culture on cCC were transferred pregnancy resulted. Twin male kids (developed from different embryos) were born on August 6, 1993, and have developed into normal bucks. Conditions reported here provided an adequate environment for support of oocyte maturation, fertilization and early embryonic development in vitro (IVMFC) with normal development after embryo transfer.  相似文献   

4.
Objective: To evaluate mesometrial transplantation of frozen-thawed ovarian tissue in rabbit and to choose the optimized fertilization method for oocytes retrieved from grafts by investigating the capability of oocyte fertilization and further development. Forty rabbits were divided into three groups randomly: control group, fresh tissues transplantation group and frozen-thawed tissues transplantation group. Three months after the transplantation, rabbits were stimulated with FSH and oocytes were retrieved 13 h after human chorionic gonadotropin (HCG) injection. Oocytes matured in vivo or in vitro were then fertilized by conventional in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI), followed by observation and evaluation of fertilization rate and blastocyst formation rate. Blastocytes embryos were transferred to pseudopregnancy rabbits to observe pregnancy rate and birth rate. There were no significant differences in the percentage of oocytes matured either in vivo or in vitro among the three groups. The fertilization rate, cleavage rate and blastocyst formation rate of in vivo-matured oocytes had no difference among the three groups, whether they were fertilized by IVF or ICSI. Significantly higher fertilization rates of in vitro-matured oocytes were observed with ICSI compared with IVF in each group. The blastocyst formation rate of in vitro-matured oocytes was significantly lower than that of in vivo-matured oocytes in each group. The birth rate of in vivo-matured oocytes was significantly higher than that of in vitro-matured oocytes, although the pregnancy rate was similar between them. Mesometrial transplantation of frozen-thawed ovarian tissue may provide favorable conditions for follicle development. Oocytes retrieved from mesometrial grafts can develop to the blastocyst stage and produce live offspring. ICSI can optimize the fertilization rate of in vitro-matured oocytes retrieved from grafts.  相似文献   

5.
The present study was conducted to evaluate the influence of sperm:oocyte ratio during in vitro fertilization (IVF) of in vitro matured cumulus-intact oocytes on fertilization parameters and embryo development in pigs. In vitro matured oocytes surrounded by intact cumulus cells (COC) were inseminated with frozen-thawed spermatozoa at different sperm:oocyte ratios (2000:1, 3000:1, 4000:1, 6000:1, and 8000:1). Denuded oocytes inseminated with 2000 frozen-thawed spermatozoa:oocyte were the control group. A total of 2546 oocytes in five replicates were exposed to spermatozoa for 6 h and then cultured in embryo culture (EC) medium for 6 h (pronuclear formation) or 7 days (blastocyst formation: BF). The penetration rate increased in the COC groups with the sperm:oocyte ratio, reaching the highest rates with 8000:1 spermatozoa:oocyte (72.1 +/- 6.5%), similar to the control (73.5 +/- 3.5%). However, the monospermy was highest with the lower spermatozoa:oocyte rates (82.6-94.8%) and decreased drastically (P<0.05) in the COC group fertilized with 8000 sperm:oocyte (36%). The efficiency of fertilization (number of monospermic oocytes/total number of inseminated oocytes) showed no difference among the COC groups (20-30%) but they were significantly lower (P<0.007) than those obtained by the control group (43.7 +/- 2%). Embryo development was highest in the control group (58% for cleavage and 23% for BF) but not significantly different with the 6000 and 8000 sperm:oocyte COC groups (47 and 50% for cleavage and 19 and 17% for BF, respectively). These results indicate that the use of COC for IVF involves a drop in the efficiency of the fertilization and the necessity to increase the frozen-thawed sperm:oocyte ratio three to four times more to obtain similar embryo development to denuded oocytes.  相似文献   

6.
The potential for rescuing immature oocytes from the ovaries of females of rare felid species which die or undergo medical ovariohysterectomy was evaluated. Ovaries were recovered from 13 species representing 35 individuals in good-to-poor health. Although the majority of females were 10 yr of age or older and in fair-to-poor health, a total of 846 oocytes were recovered of which 608 (71.9%) were classified as fair-to-excellent quality. One hundred of these oocytes were used for initial maturation classification and as parthogenetic controls. Overall, of the 508 fair-to-excellent quality oocytes placed in culture, 164 (32.3%) matured to metaphase II in vitro. For species in which 3 or more individuals yielded oocytes, mean oocyte maturation rates were as follows: 36.2%, tiger; 27.9% leopard; and 8.3%, cheetah. In vitro insemination of oocytes resulted in fertilization (2 polar bodies, 2 pronuclei, or cleavage) rates of 9.1% to 28.6% (leopard) using homologous fresh spermatozoa and 4.0% (lion) to 40.0% (puma) using homologous frozen-thawed spermatozoa. Inseminations using heterologous (domestic cat) spermatozoa also resulted in fertilized oocytes in the tiger, leopard, snow leopard, puma, serval, and Geoffroy's cat (range in fertilization rate, 5.0% for leopard to 46.2% for puma). Cleaved embryos resulted from the insemination of leopard oocytes with homologous sperm (n = 1 embryo) and puma oocytes with domestic cat sperm (n = 3 embryos). These results demonstrate that immature ovarian oocytes from rare felid species can be stimulated to mature in vitro despite an excision-to-culture interval as long as 36 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have previously reported that the percentage of fertilized oocytes which reached the blastocyst stage by Day 6 after AI with frozen-thawed semen was higher for Belclare (94%) than Suffolk (59%) ewes. This may reflect differences in the timing of fertilization (Experiment 1) or differences in oocyte quality (Experiments 2 and 3). In Experiment 1, oocytes recovered from slaughterhouse ovaries were matured in vitro for 18, 20, 24, 28 or 30 h prior to fertilization and were then cultured in vitro. In Experiment 2, Belclare (n = 69) and Suffolk (n = 71) ewes were laparoscopically inseminated using frozen-thawed semen. Presumptive zygotes were recovered between 23 and 47 h post-insemination and cultured in vitro (grouped by breed). In Experiment 3, immature oocytes from Suffolk and Belclare ewes, were matured, fertilized and cultured in vitro (grouped by breed). Cleavage rate and blastocyst development was assessed. There was no effect of time of fertilization on cleavage rate, however, a lower proportion of cleaved oocytes reached the blastocyst stage after insemination at 30h compared to 24 h (P < 0.001). Ewe breed did not affect cleavage rate of oocytes matured and fertilized in vivo (41+/-9.6 and 47+/-10.1) or in vitro (47+/-9.4 and 52+/-9.4) for Belclare and Suffolk ewes, respectively (P > 0.05; %+/-S.E.). Likewise, ewe breed had no effect on the percentage (+/-S.E.) of cleaved oocytes developing to the blastocyst stage for in vivo (29+/-7.2 and 25+/-7.9) or in vitro matured and fertilized oocytes (29+/-6.1 and 36+/-5.9) from Belclare and Suffolk ewes, respectively (P>0.05). Based on this study oocyte quality does not differ between the breeds and in addition a 4h difference in the timing of fertilization, reflective of the breed difference in the timing of the LH surge in vivo, would not affect early embryo development.  相似文献   

8.
《Theriogenology》2013,79(9):2039-2049
In mammals, recovery of oocytes by laparoscopic ovum pick-up (LOPU) coupled with in vitro production (IVP) of embryos represents a promising strategy for both amplification and genetic management of sparse animals from captive endangered wild species. As integrated technique developed mainly for domestic livestock, LOPU-IVP requires several studies to set up protocols for follicular stimulation or optimization of IVP before envisaging successful transposition to wild species. In deer, many endangered subspecies would be potentially concerned by applying such an approach using common subspecies for protocols optimization. The aim of the present study was to assess efficiency of follicle stimulation using ovine FSH (oFSH) for recovery of oocytes by LOPU in common sika deer (Cervus nippon nippon) before transposition of an optimized methodology for IVP of embryos from endangered Vietnamese sika deer hinds (Cervus nippon pseudaxis). In common sika deer, two doses of oFSH (0.25 and 0.5 U) and two frequencies of administration (12 and 24 h) were compared by monitoring of subsequent ovarian response, quality of oocytes recovered by LOPU, and in vitro developmental competence. In a first experiment, the dose of oFSH administered did not significantly affect the total number of follicles aspirated per hind per session (8.6 ± 1.0 vs. 8.2 ± 1.6 with 0.5 vs. 0.25 U oFSH, respectively; not significant). In a second experiment, frequency of 0.25 U oFSH administration did not affect ovarian response. Efficiency of IVP determined on blastocysts rates after in vitro maturation, fertilization, and development in oviduct epithelial cells coculture was increased when FSH was administered at 12-h intervals. Immune response after several follicular stimulations was detected against exogenous oFSH in plasma from the majority of sika deer hinds but was not associated with decreased ovarian response. When 0.25 U oFSH was administered at 12-h intervals to Vietnamese sika deer (N = 4), good quality cumulus oocyte complexes with complete and compact cumulus investments were recovered allowing a high cleavage rate after in vitro maturation and fertilization. Development to the blastocyst stage occurred in a high proportion (30% of oocytes) after coculture with ovine epithelial cells allowing cryobanking of transferable embryos from Vietnamese sika deer. These results confirm that LOPU-IVF after ovarian stimulation with oFSH may be a successful tool for cryobanking transferable embryos from endangered sika deer subspecies.  相似文献   

9.
The oocyte of the domestic dog is unique from that of other mammalian species studied to date. Ovulation occurs either once or twice per year, with the oocyte released at the germinal vesicle stage, and then completing nuclear and cytoplasmic maturation within the oviduct under the influence of rising circulating progesterone. In vivo meiotic maturation of the bitch oocyte is completed within 48-72 h after ovulation, which is longer than 12-36 h required for oocytes from most other mammalian species. Due to these inherently novel traits, in vitro culture systems developed for maturing oocytes of other species have been found inadequate for maturation of dog oocytes. On average, only 15-20% of ovarian oocytes achieve the metaphase II stage after 48-72 h of in vitro culture. Thus far, no offspring have been produced in the dog (or other canids) by transferring embryos derived from in vitro matured oocytes. This review addresses current knowledge about dog reproductive physiology, specifically those factors influencing in vitro developmental competence of the oocyte. This summary lays a foundation for identifying the next steps to understanding the mechanisms regulating meiotic maturation and developmental competence of the dog oocyte.  相似文献   

10.
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider 1) retrieval of immature oocytes followed by in vitro maturation (IVM) or 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture. Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of follicle-stimulating hormone (FSH) on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle cumulus-oocyte complexes (COCs) with multiple cumulus layers (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a single layer of cumulus cells or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by intracytoplasmic sperm injection, and 25% of these developed to morula-stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel matrices and cultured to small antral stage in an FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusion, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.  相似文献   

11.
The effects of zinc (as ZnCl2) on in vitro production of bovine embryos (IVMFC) and components of the procedure, that is in vitro oocyte maturation (IVM), fertilisation (IVF) and embryo development in culture (IVC), and the effect of added zinc on sperm motility were studied. Immature cumulus oocyte complexes (COCs) were aspirated from ovarian follicles (2-5 mm diameter) at slaughter, and matured, fertilised and cultured in chemically defined conditions. The presence of zinc (10, 100 or 1000 micrograms added per millilitre) throughout IVMFC inhibited fertilisation. After addition of 10 micrograms zinc per millilitre separately to media for IVM and IVF, fertilisation was inhibited only when zinc was present for IVM. When present for IVF, 80% of oocytes selected for IVM reached 2- to 4-cell stages by 46 h after insemination whereas 67% of control oocytes (inseminated without added zinc) cleaved. Higher zinc concentrations (100 and 1000 micrograms added per millilitre) for IVF inhibited fertilisation. Sperm motility was reduced with addition of 10 micrograms per millilitre of zinc for sperm preparation (i.e. capacitation interval). Addition of 1.0 microgram zinc per millilitre to media used through IVMFC, or to the IVC medium alone, resulted in inhibition of development after 2- to 4-cell stages. When added to IVM or to both IVM and IVF media 1.0 microgram/ml of zinc compromised development to the morula stage and beyond. Maturing bovine oocytes may be more sensitive to 1.0 microgram ml of zinc in vitro than in vivo because a concentration of 3.0 micrograms/ml has been reported for bovine follicular fluid. Fertilisation was not adversely affected by 10 micrograms/ml of zinc; however, higher concentrations were inhibitory.  相似文献   

12.
In this study, a short coincubation time of 10 min was used to determine the effect of different sperm:oocyte ratios during in vitro fertilization (IVF), and different periods of post-coincubation in a medium that is not appropriate for IVF, on fertilization parameters. In the first experiment, a total of 1624 in vitro matured oocytes, from 4 replicates, were inseminated with frozen-thawed spermatozoa at different sperm:oocyte ratios (2000, 1500, 1000 and 500 sperm:oocyte) and coincubated for 10 min or 6 h. The oocytes from 10 min of coincubation were washed in IVF medium to remove spermatozoa not bound to the zona pellucida and transferred to another droplet of the same medium (containing no spermatozoa) for 6h. The oocytes from the other group remained with the spermatozoa for 6h. Oocytes from both groups were then cultured in embryo culture medium (IVC) for 12h to assess fertilization parameters. In the second experiment, 1872 in vitro matured oocytes, in 3 replicates were inseminated with frozen-thawed spermatozoa using the same sperm:oocyte ratios as in the first experiment. The oocytes were coincubated for 10 min and transferred directly to IVC medium for 18 h (group A), to IVF medium (containing no sperm) only for 2h and then to IVC medium for 16 h (group B), or to IVF medium (containing no sperm) for 6h and then to IVC medium for 12 h (group C or control). There was an effect of sperm:oocyte ratio on all fertilization parameters in experiment 1. The efficiency of IVF (number of monospermic oocytes/total number inseminated) was higher (P<0.05) for oocytes coincubated with spermatozoa for 10 min and inseminated with 1500 and 1000 sperm:oocyte (35.8+/-3 and 37.6+/-2.7%, respectively) and for those coincubated for 6h with 500 spermatozoa per oocyte (37.2+/-3.1%). In experiment 2, the penetration and efficiency rates obtained in group A were poor (between 3 and 15%) irrespective of the sperm:oocyte ratio. However, in group B the fertilization parameters were similar to the controls and were also affected by the sperm:oocyte ratio. These results demonstrate that coincubation time may be reduced to 10 min to increase the efficiency of fertilization depending on the sperm:oocyte ratio, and that the spermatozoa bound to the zona pellucida require a maximum of 2h in an appropriate medium to penetrate the oocytes.  相似文献   

13.
Ovine tubal (n = 87) and ovarian in vitro matured oocytes (n = 99) were fertilized in vitro with ejaculated spermatozoa capacitated for 8 h in modified defined medium buffered with Hepes. High levels of fertilization were obtained as assessed by development to two-to six-cell stage within 40 h (75. 8% for ovulated and 62. 6% for in vitro matured oocytes). Electron microscope analysis of oocytes 20–22 h after insemination indicated that in vitro fertilization approximated the in vivo events. Embryos (two- to six-cell) were transferred surgically to the oviducts of pseudopregnant rabbits. Three days later, 42 (from ovulated oocytes) and 15 (from in vitro matured oocytes) embryos were recovered; 26 (61. 9%) and 10 (66. 6%), respectively, had cleaved at least once. Embryos incubated in vivo (n = 20 from ovulated oocytes; n = 9 from in vitro matured oocytes) were transferred surgically to the uteri of seven and four recipient ewes resulting in four and two pregnancies, respectively, from which three and one, respectively, have been maintained ( > 3 months). The first lamb resulting from the in vitro fertilization of an ovulated oocyte was born. In addition, six embryos (two- to four-cell) from tubal oocytes and ten embryos (two- to six-cell) from in vitro matured oocytes were directly transferred to the oviducts of two and three ewes, respectively. Two pregnancies resulting from in vitro matured fertilized oocytes are in progress ( > 3 months).  相似文献   

14.
The time course and conditions necessary for oocyte maturation and subsequent fertilization in vitro were studied in the domestic cat. Darkly pigmented oocytes surrounded by cumulus cells and a tight corona radiata were collected from ovaries removed at ovariohysterectomy. After culture in Eagle's minimum essential medium, oocytes were evaluated for nuclear maturation by analyzing chromosomal spreads. Oocytes achieved metaphase II after intervals of 40–48 hr of in vitro incubation. The incidence of maturation was enhanced (P<0.05) when oocytes were recovered from inactive (54%) or follicular (56%) stage donors compared to those recovered from luteal phase (29%) or pregnant (35%) cats. The proportion of oocytes successfully maturing in vitro in medium containing no hormone supplementation (37%) was less (P<0.01) than counterparts cultured in follicle-stimulating hormone (FSH) only (48%) or FSH and luteinizing hormone (LH) (54%). The efficiency of maturation was not influenced (P >0.05) by either maintenance/transport temperature (4°C vs. 22°C) or delaying recovery of oocytes from antral follicles (2–8 hr vs. 24–32 hr). Approximately 36% of the in vitro matured oocytes cocultured with spermatozoa demonstrated evidence of fertilization; however, there appeared to be a critical development period for maximizing the incidence of fertilization. These results demonstrate that domestic cat antral oocytes are capable of maturing in vitro, and maturation is influenced by the reproductive status of the donor and the presence of gonadotropins in the culture medium. These oocytes are capable of forming embryos and developing to at least the 16-cell stage in vitro.  相似文献   

15.
In rhesus monkeys undergoing ovarian stimulation for in vitro fertilization (IVF), a midcycle injection of human chorionic gonadotropin (hCG) substitutes for the LH surge and induces preovulatory oocyte maturation. The time interval between injection and oocyte collection, ideally, allows for the completion of oocyte maturation without ovulation, which would reduce the number of oocytes available for harvest. To evaluate the influence of this time interval on oocyte parameters following hCG administration, we conducted a series of gonadotropin treatment protocols in 51 animals in which the interval from hCG administration to follicular aspiration was systematically varied from 27 to 36 hr. Follicle number and size, evaluated prior to hCG administration by sonography, did not vary significantly or consistently with preovulatory maturation time. Oocytes were harvested by laparotomy or laparoscopy, and scored for maturity before insemination. The percentage of mature, metaphase II (MII) oocytes at recovery increased significantly with increasing preovulatory time and was inversely proportional to that of metaphase I (MI) oocytes. However, oocyte yield tended toward a progressive decrease with increasing preovulatory maturation times from a high of 27 oocytes at 27 hr to a low of 17 oocytes/animal at the 36 hr time interval. Fertilization levels declined significantly from a high of 50% at 27 hr to a low of 30% at 36 hr. Thus, although higher percentages of mature oocytes were recovered at the longer time intervals, optimal oocyte/embryo harvests were realized after the shorter time intervals (27 and 32 hr) and are most compatible with the goal of achieving high yields of fertile oocytes and embryos following gonadotropin stimulation in rhesus monkeys. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Men H  Monson RL  Rutledge JJ 《Theriogenology》2002,57(3):1095-1103
We investigated the effect of meiotic stages and two maturation protocols on bovine oocyte's resistance to cryopreservation. Oocytes at germinal vesicle breakdown (GVBD) and metaphase II (MII) stage as well as oocytes matured for 22 h in media supplemented with FSH or LH were vitrified by the open pulled straw method. After warming, oocytes underwent additional 16 h (GVBD group) or 2 h (MII group) maturation. Then they were subjected to in vitro fertilization and culture. Some oocytes that matured in the medium supplemented with LH were subjected to parthenogenetic activation after vitrification to determine their developmental potential in absence of fertilization. Survival of oocytes after vitrifying/warming was determined after 22 h in fertilization medium. Cleavage and blastocyst formation rates were used to assess their developmental competence. In both experiments, a portion of unvitrified MII oocytes were subjected to in vitro fertilization and culture as control groups. In Experiment 1, similar cleavage rates were obtained for both GVBD and MII oocytes (53.56 versus 58.01%, P > 0.05). However, significantly higher proportion of cleaved embryos from vitrified MII oocytes developed into blastocysts than those from vitrified GVBD oocytes (1.06 versus 8.37%, respectively, P < 0.01). In Experiment 2, vitrified MII oocytes matured in medium supplemented with LH were superior to vitrified MII oocytes matured in FSH supplementation not only in cleavage rates (61.13 versus 50.33%), but in blastocyst formation rates (11.79 versus 5.19%, P < 0.01) as well. Cleavage and blastocyst formation rates of parthenogenetically activated oocytes were similar to those that were fertilized. Nevertheless, the vitrifying/ warming process significantly compromised the oocytes' developmental capacity since the vitrified oocytes showed significant reduction in both cleavage and blastocyst rates compared to those of not vitrified controls in both experiments (P < 0.01). We showed that oocytes at different maturation stages respond to cryopreservation differently and MII stage oocytes have better resistance to cryopreservation than GVBD stage oocytes. The maturation protocols also influence oocyte's ability to survive cryopreservation. Poor developmental potential after vitrification seem to have resulted from the cryodamage to the oocyte itself. These results suggested the importance of maturation on the developmental competence of cryopreserved oocytes.  相似文献   

17.
The localization and changes in microfilaments (MF) during golden hamster oocyte maturation were examined by an immunofluorescein method and confocal laser scanning microscopy (CLSM). We also studied the relationship between the changes in MF and oocyte nuclear and cytoplasmic maturation. During in vivo maturation, generalized submembranous MF were found initially which gradually became more prominent at the site of the first polar body extrusion. However, 43.7% of the in vitro matured metaphase 2 stage oocytes lacked the submembranous MF structure. This fact may partly account for the low fertilization rate of in vitro matured oocytes. MF were not found in the folicular oocytes cultured in cytochalasin-D-containing medium, and metaphase-like chromosomes were located at the center of the oocyte and first polar body extrusion did not occur. Twenty-five percent of the oocytes, which were arrested at meiosis by hypoxanthine, synthesized submembranous MF structure although the nuclear stage of these oocytes was germinal vesicle. These facts suggest that MF plays a role in nuclear behavior but there are some differences in the changes taking place within the nucleus and MF. MF may play a role in oocyte cytoplasmic maturation although the details of this have yet to be established. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Ng SC  Martelli P  Liow SL  Herbert S  Oh SH 《Theriogenology》2002,58(7):1385-1397
Intracytoplasmic sperm injection (ICSI) with frozen-thawed epididymal spermatozoa was performed in the cynomolgus monkey (Macacafascicularis) to produce embryos in vitro. Eleven sexually mature females were hyperstimulated with an GnRH agonist (1.8 mg active triptorelin per 2 kg body weight), followed (2 weeks later) by rFSH (37.5 IU per 2 kg daily) for 12 days, and finally 1000 IU of hCG. Epididymal spermatozoa were collected from a single adult male monkey. The first stimulation cycle resulted in 90 oocytes; 70% of which were metaphase II (MII). Sixty-four percent of these MII oocytes were fertilized. Comparing ovarian response of five monkeys that underwent a second stimulation cycle there was an increase in oocyte quantity (13.2 versus 9.2 oocytes per monkey) but the percentage of MII oocytes remained the same at 58%. Fertilization and cleavage rates were also reduced but there was an increase in the number of embryos available for transfer. Overall, four monkeys became pregnant resulting in the birth of two healthy infants and two abortions. These findings show that ovarian stimulation by GnRH-rFSH did not compromise the developmental competence of the oocytes; effective combination of cryopreservation of epididymal spermatozoa and ICSI is possible in nonhuman primate reproduction, and thus has potential application in the conservation of highly endangered nonhuman primate species, and the cynomolgus monkey is a reliable biomedical research model to study the potential risks and benefits associated with assisted reproductive techniques prior to approval for clinical trials on humans.  相似文献   

19.
The use of soybean lecithin in an glycerol-based solution for slow freezing of in vitro matured, fertilized and cultured (IVMFC) bovine embryos was examined. Embryos were developed in vitro in INRA Menezo's B2 medium supplemented with 10% fetal calf serum (FCS) on Vero cells monolayers. Day 7 blastocysts were frozen in a two-step protocol consisting of exposure to 5% glycerol and 9% glycerol containing 0.2 M sucrose in F1 medium + 20% FCS. Soybean lecithin was either added or not to the freezing solutions at a final concentration of 0.1% (w/v). In Experiment 1, blastocysts were equilibrated in cryoprotectant solutions without cooling. Cryoprotectant was diluted from embryos with 0.5 M and 0.2 M sucrose. The percentages of fully expanded and hatched blastocysts treated with or without lecithin after 24 and 48 h in culture were not significantly different (100 versus 100% and 93.3 versus 100%, respectively). In Experiment 2, the in vitro survival of frozen-thawed IVMFC blastocysts was compared when cryoprotectant solutions were either supplemented or not with lecithin. No significant effect of lecithin was found on the ability of frozen-thawed blastocysts to re-expand after 48 h in culture (65.6 and 54.2%, respectively). However, the post-thaw hatching rate of embryos cryopreserved in the presence of 0.1% lecithin was significantly higher after 72 h in culture (52 and 31.8%, respectively). In Experiment 3, the ability of frozen-thawed IVMFC blastocysts to establish pregnancy following single embryo transfer was determined. Transfers of 58 and 66 frozen-thawed embryos cryopreserved with or without lecithin resulted in 6 and 10 (10.3 and 15.1%, respectively) confirmed pregnancies at Day 60. Addition of lecithin to cryoprotectants did not improve the in vivo development rate of cryopreserved IVMFC bovine blastocysts.  相似文献   

20.
In vitro embryo production in the domestic bitch can provide valuable insights for conservation of endangered canids. In the present study, canine oocytes underwent in vitro maturation (IVM) in simple or complex media, with production of in vitro matured and fertilized (IVM/IVF) canine embryos. Cumulus–oocyte complexes (COCs) were harvested from ovaries by slicing and subjected to IVM in four media (SOF, TCM 199, Ham-F10, and DMEM/F12). After culture for 48 h, oocytes were stained and examined for nuclear maturation. There were no significant differences in the mean (±S.D.) percentage of nuclear maturation (metaphase II) of oocytes cultured in SOF (18.6 ± 7.6%), TCM 199 (18.3 ± 4.5%), Ham-F10 (13.9 ± 8.2%), or DMEM/F12 (11.9 ± 4.2%). For assessment of embryo development, oocytes were matured for 48 h in synthetic oviductal fluid (SOF), fertilized with frozen-thawed sperm, and presumptive zygotes were cultured for 7 d, either in SOF or as co-cultures with BRL cells in TCM 199. Percentages of IVM/IVF oocytes that developed to the 2-cell, 3–4-cell, and 5–7-cell stages were higher (P < 0.05) following culture in SOF versus BRL cell co-cultures (33.6 ± 1.2% vs 13.7 ± 1.2%, 24.7 ± 0.5% vs 8.7 ± 1.1%, and 15.1 ± 2.2% vs 4.3 ± 1.3%, respectively). However, none of the embryos developed beyond the 8–16-cell stage. In conclusion, simple or complex media successfully induced resumption of meiosis and nuclear maturation of canine oocytes. Furthermore, SOF supported in vitro development of IVM/IVF canine embryos to the 8–16-cell stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号