首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of l-menthone, which is synthesized in the epidermal oil glands of peppermint (Mentha piperita L. cv. Black Mitcham) leaves, is compartmented; on leaf maturity, this ketone is converted to l-menthol and l-menthyl acetate in one compartment, and to d-neomenthol and d-neomenthyl glucoside in a separate compartment. All of the enzymes involved in these reactions are soluble when prepared from whole-leaf homogenates. Mechanical separation of epidermal fragments from the mesophyll, followed by preparation of the soluble enzyme fraction from each tissue, revealed that the neomenthol dehydrogenase and the glucosyl transferase resided specifically in the mesophyll layer, whereas the menthol dehydrogenase and substantial amounts of the acetyl transferase were located in the epidermis, presumably within the epidermal oil glands. These results suggest that the compartmentation of menthone metabolism in peppermint leaves is intercellular, not intracellular.  相似文献   

2.
The biochemistry, organization, and regulation of essential oil metabolism in the epidermal oil glands of peppermint have been defined, and most of the genes encoding enzymes of the eight-step pathway to the principal monoterpene component (−)-menthol have been isolated. Using these tools for pathway engineering, two genes and two expression strategies have been employed to create transgenic peppermint plants with improved oil composition and yield. These experiments, along with related studies on other pathway genes, have led to a systematic, stepwise approach for the creation of a ‘super’ peppermint.  相似文献   

3.
Leaf senescence is a highly organized process and not a passive decay. Photosynthesizing mesophyll cells lose their functions in an early phase, while the epidermal layer with the stomates and the phloem remains functional throughout senescence. The subcellular compartmentation is maintained and allows the cooperation of different organelles in the remobilization of constituents. Nitrogen metabolism changes at the onset of senescence from assimilation to remobilization. Enzymes involved in nitrate reduction are lost, while some enzymes of intermediary nitrogen metabolism are maintained longer, and some catabolic enzymes reach highest activities during senescence. Chloroplasts are dismantled early, but mitochondria remain active and may fuel remobilization processes. Chloroplast proteins are degraded, and this nitrogen fraction can be translocated via the phloem from senescing leaves to sinks within the same plant. In contrast, chlorophyll is degraded, fragments produced reach the vacuole, and catabolites accumulate there. Nuclear DNA is maintained until a very late phase. The export of nitrogen from senescing plant parts is important for the economic use of this macronutrient. The regulation of senescence at the whole plant level as well as at the molecular level is only rudimentarily known, although interesting new aspects have been presented recently.  相似文献   

4.
Crustaceans have successfully adapted to a variety of environments including fresh- and saltwater as well as land. Transition from an aquatic to a terrestrial lifestyle required adaptations of the sensory equipment of an animal, particularly in olfaction, where the stimulus itself changes from hydrophilic to mainly hydrophobic, air-borne molecules. Hermit crabs Coenobita spp. (Anomura, Coenobitidae) have adapted to a fully terrestrial lifestyle as adults and have been shown to rely on olfaction in order to detect distant food items. We observed that the specialized olfactory sensilla in Coenobita, named aesthetascs, are immersed in a layer of mucous-like substance. We hypothesized that the mucous is produced by antennal glands and affects functioning of the aesthetascs.Using various microscopic and histochemical techniques we proved that the mucous is produced by aesthetasc-associated epidermal glands, which we consider to be modified rosette-type aesthetasc tegumental glands known from aquatic decapods. These epidermal glands in Coenobita are multicellular exocrine organs of the recto-canal type with tubulo-acinar arrangement of the secretory cells. Two distinct populations of secretory cells were clearly distinguishable with light and electron microscopy. At least part of the secretory cells contains specific enzymes, CUB-serine proteases, which are likely to be secreted on the surface of the aesthetasc pad and take part in antimicrobial defense. Proteomic analysis of the glandular tissue corroborates the idea that the secretions of the aesthetasc-associated epidermal glands are involved in immune responses.We propose that the mucous covering the aesthetascs in Coenobita takes part in antimicrobial defense and at the same time provides the moisture essential for odor perception in terrestrial hermit crabs. We conclude that the morphological modifications of the aesthetasc-associated epidermal glands as well as the functional characteristics of their secretions are important adaptations to a terrestrial lifestyle.  相似文献   

5.
棉铃虫幼虫唾液腺cDNA文库的构建及EST分析   总被引:1,自引:0,他引:1  
棉铃虫Helicoverpa armigera (Hübner)幼虫唾液中的各种酶类及各种生化组分在棉铃虫与植物相互作用及协同进化中起到重要作用; 唾液腺是棉铃虫唾液成分的合成器官。本研究通过构建棉铃虫幼虫唾液腺全长cDNA文库, 测序得到1 502条EST序列, 聚类分析后获得821个unigenes, 为筛选棉铃虫与寄主互作信号因子提供基因信息资源。使用Blast2 GO软件对821个unigenes进行了比对和功能注释, 初步获得棉铃虫幼虫唾液腺中mRNA的构成特征。结果显示, 在棉铃虫唾液腺ESTs文库中, 鉴定得到脂类相关消化酶基因17个, 糖类相关消化酶基因5个, 半胱氨酸蛋白酶基因1个, 丝氨酸蛋白酶基因20个(其中16个为新发现), 提示唾液腺的主要功能是分泌消化酶进行预消化; 还发现在棉铃虫幼虫唾液腺中存在表皮蛋白、 气味结合蛋白和化学感受蛋白基因。结果为研究棉铃虫预消化系统打下基础。  相似文献   

6.
7.
The Lamiaceae is rich in aromatic plant species. Most of these species produce and store essential oils in specialised epidermal oil glands, which are responsible for their specific flavour. Two types of glands producing essential oil and possessing different morphological structure can be found in Salvia sclarea : peltate and capitate glands. The content of single oil glands from different positions on the plant (corolla, calyx and leaf) were sampled using an SPME fibre and analysed by gas chromatography in order to study variability of the essential oil composition. It was found that the composition of terpenoids is quite variable within an individual plant. Capitate oil glands mainly produce three essential oil compounds: the monoterpenes linalool and linalyl acetate, and the diterpene sclareol. Peltate oil glands, however, accumulate noticeable concentrations of sesquiterpenes and an unknown compound (m/z = 354). Furthermore, the oil composition varies within each gland type according to the plant organ. Linalool and linalyl acetate are characteristic substances of flowers, whereas the sesquiterpenes occur in higher proportions in leaves. Even within one gland type on a single leaf, the chemical variability is exceedingly high.  相似文献   

8.
植物内生菌促进宿主氮吸收与代谢研究进展   总被引:6,自引:0,他引:6  
杨波  陈晏  李霞  任承钢  戴传超 《生态学报》2013,33(9):2656-2664
内生菌与植物共生能够提高宿主的氮吸收与氮代谢水平,这可能是由于内生菌在植物体内引发的多种效应的综合结果.植物内生菌能够通过促进植物根系发育和固氮作用为宿主植物提供更多的无机氮素;能够通过分泌多种胞外酶系如漆酶、蛋白水解酶等使宿主植物更好地利用有机氮素;能够提高宿主氮代谢关键酶如硝酸还原酶(NR)、谷氨酰胺合成酶(GS)等酶的活性;能够提高宿主植物激素水平和维生素含量从而促进宿主氮代谢;能够通过影响宿主植物氮代谢促进宿主植物分蘖、提高宿主植物叶绿素含量和光合速率等等.综述了国内外关于植物内生菌促进宿主氮代谢的相关报道,归纳了植物内生菌影响宿主氮素吸收与代谢的可能机制,并展望了关于植物内生菌促进宿主氮代谢机制方面的研究方向.  相似文献   

9.
The pitchers of the tropical carnivorous plant Nepenthes alata are highly specialized organs for the attraction and capture of insects and absorption of nutrients from them. This study examined the structure and development of these pitchers, with particular focus on the nectaries and digestive glands. Immature pitchers developed at the tips of tendrils and were tightly sealed by a lid structure that opened during the end of pitcher elongation. Opened pitchers exposed a ridged peristome containing large nectaries. Like other members of the genus, a thick coating of epicuticular waxy scales covered the upper one-third of the pitcher. Scattered within this zone were cells resembling a stomatal complex with a protruding ridge. Cross sections showed that this ridge was formed by asymmetric divisions of the epidermal cells and lacked an underlying pore. The basal region of the trap had large multicellular glands that developed from single epidermal cells. These glands were closely associated with underlying vascular traces and provided a mechanism for supplying fluid to closed immature pitchers.  相似文献   

10.
Screening tests have been devised to detect the catalytic activities of at least 19 enzymes, primarily of the Emden-Meyerhof pathway, in normal blood specimens collected and dried on filter paper. Since these specimens can be mailed to a laboratory for assay, such screening tests may be useful in detecting individuals with inborn errors of metabolism among large populations or in certain types of genetic studies. Two new screening tests, for argininosuccinic aciduria and orotic aciduria, have been devised. These tests detect the normal enzyme activity in erythrocytes by means of a visible growth response of bacterial auxotrophs when nonutilizable substrates are converted by the enzymes into growth-promoting products. The use of the dried blood specimen in gel electrophoretic and immunoelectrophoretic procedures for genetic studies is also described.This investigation was supported in part by National Institutes of Health Grant No. NB-05290 and by the Children's Bureau Grant No. 435.  相似文献   

11.
In Chilopoda, solitary epidermal glands are composed of a couple of cells only. These glands are highly abundant on the entire body surface and are distributed throughout the single-layered epidermis. Some authors provided more or less comprehensive observations on the structure of epidermal glands of specific chilopod taxa. However, no information is hitherto available on the ultrastructural diversity of these glands. Furthermore, potential homologies of these chilopod epidermal glands and of their characteristic cellular components remain unknown. Based on our results, we are now able to distinguish two types of epidermal glands in Chilopoda that can be clearly distinguished by their structure and the course of their conducting canal: recto-canal epidermal glands (rceg) and flexo-canal epidermal glands (fceg). In the present paper, we focus on the rceg. We examined the ultrastructural organization of these glands in the head region and on the anterior trunk segments of various representatives of the five extant chilopod orders by light- and electron-microscopy. According to our terminology, rceg consist of up to five different cell types including: a) distal canal cells, b) proximal canal cells, c) intermediary cells, and d) two different types of secretory cells. Intermediary and canal cells form a common conducting canal. The rceg may taxon-specifically differ in relative size and subcellular architecture, but all have the following features in common: 1) a wide distribution on various body regions among all five chilopod subtaxa, 2) the straight, broad and locally dilated conducting canal surrounded by closely packed microvilli or microvilliform infoldings around the apex of the canal cell(s), and 3) the tendency to aggregate to form compound glandular organs of massive size and complexity. Tricellular glandular units established by three different cell types are observed in Scutigeromorpha and Geophilomorpha, whereas four cell types constitute rceg in Lithobiomorpha and Craterostigmomorpha. Five different cell types per glandular unit are found only in Scolopendromorpha. The partial cuticularization of the lower part of the conducting canal formed by the intermediary cell, as found in Chilopoda, differs from the pattern described for equivalent euarthropod epidermal glands, as for instance in Hexapoda. Their wide distribution in Chilopoda and Progoneata makes it likely that tricellular rceg were at least present in the last common ancestor of the Myriapoda. Concerning Chilopoda, the evolution of highly diverse rceg is well explained on the basis of the Pleurostigmophora concept. Glands of the recto-canal type are also found in other arthropods. The paper discusses cases where homology of rceg and also fceg may be assumed beyond Myriapoda and briefly evaluates the potentials and the still-to-be-solved issues prior to use them as an additional character system to reconstruct the phylogeny of the Euarthropoda.  相似文献   

12.
Physiological roles of plant glycoside hydrolases   总被引:2,自引:0,他引:2  
Minic Z 《Planta》2008,227(4):723-740
The functions of plant glycoside hydrolases and transglycosidases have been studied using different biochemical and molecular genetic approaches. These enzymes are involved in the metabolism of various carbohydrates containing compounds present in the plant tissues. The structural and functional diversity of the carbohydrates implies a vast spectrum of enzymes involved in their metabolism. Complete genome sequence of Arabidopsis and rice has allowed the classification of glycoside hydrolases in different families based on amino acid sequence data. The genomes of these plants contain 29 families of glycoside hydrolases. This review summarizes the current research on plant glycoside hydrolases concerning their principal functional roles, which were attributed to different families. The majority of these plant glycoside hydrolases are involved in cell wall polysaccharide metabolism. Other functions include their participation in the biosynthesis and remodulation of glycans, mobilization of energy, defence, symbiosis, signalling, secondary plant metabolism and metabolism of glycolipids.  相似文献   

13.
Mithöfer A 《Phytochemistry》2011,72(13):1678-1682
Plant insect interactions are usually recognized as a scenario where herbivorous insects feed on a host plant. However, also the opposite situation is known, where plants feed on insects. Carnivorous pitcher plants of the genus Nepenthes as well as other pitcher plants obtain many nutrients from caught insect prey. Special features of the pitcher traps’ surface are responsible for attraction and trapping insects. Once caught, the prey is digested in the fluid of the pitchers to release nutrients and make them available for the plant. Nutrients are taken up by special glands localized on the inner surface of the pitchers. These glands also secrete the hydrolyzing enzymes into the digestion fluid. Although this is known for more than 100 years, our knowledge of the pitcher fluid composition is still limited. Only in recent years some enzymes have been purified from the pitcher fluid and their corresponding genes could be identified. Among them, many pathogenesis-related proteins have been identified, most of which exhibiting hydrolytic activities. The role of these proteins as well as the role of secondary metabolites, which have been identified in the pitcher fluid, is discussed in general and in the context of further studies on carnivorous plants that might give answers to basic questions in plant biology.  相似文献   

14.
Dye-ligand and immobilized metal ion interaction chromatography were shown to be efficient techniques for the rapid batchwise fractionation, from crude plant extracts, of a series of enzymes of prenyl pyrophosphate metabolism. Isopentenyl pyrophosphate isomerase, two prenyltransferases, and a number of terpene cyclases (synthases) were readily adsorbed to Matrex Gel Red A (a dimeric triazine dye coupled to cross-linked agarose beads), and desorbed in good yield with relatively high concentrations of KCl and increasing pH. Although all of these enzymes exhibit the common feature of employing a pyrophosphorylated substrate, selective elution could not be achieved with substrate or substrate analogues bearing a pyrophosphate function. Nor could the strong binding of these enzymes to triazine dyes be attributed solely to metal ion interactions or to hydrophobic effects. In a similar way, the isomerase, the prenyltransferases, and all of the terpene cyclases bound to a column of iminodiacetate-immobilized Ni(II) and were desorbed in relatively high fold purity with 15 mM imidazole. Although all of these enzymes bear accessible histidine residues, the interactions with the chelated metal ion were not sufficiently different to permit selective enzyme desorbtion by imidazole gradient elution. However, the use of columns charged with Zn(II) or Co(II) did allow some separation of the different cyclase and transferase types. While empirical in nature, these techniques offer simple, effective, and high-capacity methods for the preliminary concentration and purification of a group of enzymes that utilize prenyl pyrophosphate intermediates of isoprenoid biosynthesis.  相似文献   

15.
Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders have provided unique models to dissect physiologic processes in normal epidermis and the pathophysiology of more common scaling conditions. In most of these disorders, a permeability barrier abnormality "drives" pathophysiology through stimulation of epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO(4)) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase separation. However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional roles of CSO(4) as a regulator of both epidermal differentiation and corneodesmosome degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of glucosylceramides as a result of to beta-glucocerebrosidase deficiency). Finally, failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating epidermal proliferation, but also by inducing inflammation.  相似文献   

16.
17.

Metabolons are multi-enzyme protein complexes composed of enzymes catalyzing sequential reactions in a metabolic pathway. Metabolons mediate substrate channeling between the enzyme catalytic cores to enhance the pathway reactions, to achieve containment of reactive intermediates, and to prevent access of competing enzymes to the intermediates. These provide unique advantages in metabolic regulation. The discovery of plant metabolons has been accelerated by the recent technical developments and a considerable number of metabolons involved in both primary and secondary metabolism have been indicated in the last decade. These findings related with plant metabolons are comprehensively reviewed in this review, indicating metabolome-wide engagement of metabolons. However, there are still unexplored frontiers remaining for further discovery of metabolons in plant metabolism. Pathways with high potential of novel metabolon and technical issues to be solved for the future discovery will also be discussed.

  相似文献   

18.
Kojima M  Conn EE 《Plant physiology》1982,70(3):922-925
The tissue distributions of cholorgenic acid, chlorogenic acid oxidase, and three other enzymes involved in the metabolism of this secondary (natural) product have been investigated in leaf-blades of light-grown seedlings of Sorghum bicolor. Cholorogenic acid was found only in epidermal and mesophyll protoplasts isolated from the leaf; 60% of the chlorogenic was contained in the epidermal fraction. Nearly all (90%) of the chlorogenic acid oxidase was found in the mesophyll protoplasts. The bundle-sheath strands, on the other hand, contained no chlorogenic acid and essentially none of the oxidase. Three other enzymes required for the synthesis of chlorogenic acid, but also for other plant products, were found in all three tissue fractions.  相似文献   

19.
This comparative study investigates the mechanism of cadmium accumulation in the semiaquatic plant Nymphoides peltata (Menyanthaceae) and the aquatic plant Nymphaea (Nymphaeaceae). It was conducted as part of an ongoing study of the use of water plants for phytoremediation. Epidermal structures, known as hydropotes, are located on the abaxial epidermis of the leaf laminae of Nymphoides peltata and are shown to contain phenols, peroxidase and polyphenol oxidase activities. When plants are subjected to 50 mg/l of cadmium in the growth medium, these hydropotes accumulate cadmium. Cadmium-induced increases in phenols, peroxidase and polyphenol oxidase activities were determined in plant extracts. Cadmium binding by polymerized phenols was demonstrated in vivo. In comparison with Nymphaeae epidermal glands, N. peltata hydropotes are larger, open, and create bigger crystal, the latter principally composed of calcium and, proportionally, less cadmium. Although both plants showed similar levels of cadmium accumulation, N. peltata was sensitive while Nymphaeae was resistant to this cadmium level. It is suggested that in these water plants the main mechanism for cadmium accumulation is based on the trapping of cadmium crystals by polymerized phenols in specialized epidermal structures and this is due to peroxidase and polyphenol oxidase activities. Nymphaeae, with greater peroxidase activity and more polyphenols, is more resistant to this heavy metal than N. peltata.  相似文献   

20.
The activities of enzymes of pentose phosphate pathway (PPP) viz. glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and carbon metabolism viz. phosphoenol pyruvate carboxylase, NADP- isocitrate dehydrogenase and NADP-malic enzyme were measured in the plant and bacteroid fractions of mungbean (ureide exporter) and lentil (amide exporter) nodules along with the developing roots for comparison. The enzymes of pentose phosphate pathway in legume cytosol had higher activities at a stage of maximum nitrogenase activity and higher sucrose metabolism. However, bacteroids had only limited capacity for this pathway. The specific activities of these enzymes were greater in ureide than in amide exporter. CO2 fixation via higher activity of phosphoenolpyruvate carboxylase in the plant part of the nodules in lentil might have been due to the greater synthesis of four carbon amino acids for amide export. The peak of NADP-isocitrate dehydrogenase in both legumes coincided with the pentose phosphate pathway enzymes at the time of high rates of sucrose metabolism and nitrogen fixation. Higher activities of NADP-malic enzyme were obtained in mungbean than in the lentil nodules. These findings are consistent with the role of these enzymes in providing reductant (NADPH) and substrates for energy yielding metabolism of bacteroids and carbon skeletons for ammonia assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号