首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Although the flower is the central feature of the angiosperms, little is known of its origin and subsequent diversification. The ABC model has long been the unifying paradigm for floral developmental genetics, but it is based on phylogenetically derived eudicot models. Synergistic research involving phylogenetics, classical developmental studies, genomics and developmental genetics has afforded valuable new insights into floral evolution in general, and the early flower in particular. SCOPE AND CONCLUSIONS: Genomic studies indicate that basal angiosperms, and by inference the earliest angiosperms, had a rich tool kit of floral genes. Homologues of the ABCE floral organ identity genes are also present in basal angiosperm lineages; however, C-, E- and particularly B-function genes are more broadly expressed in basal lineages. There is no single model of floral organ identity that applies to all angiosperms; there are multiple models that apply depending on the phylogenetic position and floral structure of the group in question. The classic ABC (or ABCE) model may work well for most eudicots. However, modifications are needed for basal eudicots and, the focus of this paper, basal angiosperms. We offer 'fading borders' as a testable hypothesis for the basal-most angiosperms and, by inference, perhaps some of the earliest (now extinct) angiosperms.  相似文献   

2.
The origin of angiosperms has been a focus of intensive research for a long time.The so-called pre-Cretaceous angiosperms,including Schmeissneria,are usually clouded with doubt.To expel the cloud around the enigmatic Schmeissneria,the syntype and new materials of Schmeissneria collected previously in Germany and recently in China are studied.These materials include female inflorescences and infructescences.The latter are old materials but were under-studied previously.Light microscopy and scanning electron microscope observations indicate that the fruits in these infructescences have in situ seeds enclosed,and that the ovaries are closed be fore pollination.Thus the plants meet two strict criteria for angiosperms:angiospermy plus angio-ovuly.Placing Schmeissneria in angiosperms will extend the record of angiosperms up to the Early Jurassic,more compatible with many molecular dating conclusions on the age of angiosperms,and demanding a reassessment of the current doctrines on the origin of angiosperms.Although the phylogenetic relationship of Schmeissneria to other angiosperms apparently is still an open question,this study adds to research concerning the origin of angiosperms.  相似文献   

3.
The origin of angiosperms has been a focus of intensive research for a long time. The so-called preCretaceous angiosperms, including Schmeissneria, are usually clouded with doubt. To expel the cloud around the enigmatic Schmeissneria, the syntype and new materials of Schmeissneria collected previously in Germany and recently in China are studied. These materials include female inflorescences and infructescences. The latter are old materials but were under-studied previously. Light microscopy and scanning electron microscope observations indicate that the fruits in these infructescences have in situ seeds enclosed, and that the ovaries are closed before pollination. Thus the plants meet two strict criteria for angiosperms: angiospermy plus angio-ovuly. Placing Schmeissneria in angiosperms will extend the record of angiosperms up to the Early Jurassic, more compatible with many molecular dating conclusions on the age of angiosperms, and demanding a reassessment of the current doctrines on the origin of angiosperms. Although the phylogenetic relationship of Schmeissneria to other angiosperms apparently is still an open question, this study adds to research concerning the origin of angiosperms.  相似文献   

4.
Flowers consist primarily of four basic organ types whose relative positions are universally conserved within the angiosperms. A model has been proposed to explain how a small number of regulatory genes, acting alone and in combination, specify floral organ identity. This model, known widely as the ABC model of flower development, is based on molecular generic experiments in two model organisms,Arabidopsis thaliana and Antirrhinum majus.Both of these species are considered to be eudicots, a clade within the angiosperms with a relatively conserved floral architecture. In this review, the application of the ABC model derived from studies of these typical eudicot species is considered with respect to angiosperms whose floral structure deviates from that of the eudicots. It is concluded that the model is universally applicable to the angiosperms as a whole, and the enormous diversity seen among angiosperms flowers is due to genetic pathways that are downstream, or independent, of the genetic programme that specifies floral organ identity.  相似文献   

5.
The contributions to the symposium on "New evidence for relationships and modern classifications in angiosperms" (held on 22 Aug 1981 during the XIII International Botanical Congress in Sydney) are surveyed, the present situation of this field of research is outlined. A ± monophyletic origin of the angiosperms is supported. Evidence for relationships among major taxa is still fragmentary and yet enormously expanding; synthetic efforts therefore become more and more imperative. A comparison of current classifications reveals similarities and convergencies, but also many areas of divergence and uncertainty. Ways towards a generally acceptable and more natural system of angiosperms are suggested.  相似文献   

6.
Despite increasing claims of pre-Cretaceous angiosperms, whether there really are angiosperms in the Jurassic is apparently still an open question for many people before further evidence is available. This question can only be answered by studying more Jurassic plant fossils. Here we report a fossil angiosperm, Yuhania daohugouensis gen. et sp. nov, from the Middle Jurassic of Inner Mongolia, China. The plant includes connected stem, leaves, flowers, aggregate fruits, fruitlets, and seeds within fruitlets. The leaves are helically arranged along the curving stem, linear in shape, with 5–6 parallel veins. The aggregate fruit is pedicellate, composed of over 20 carpels/fruitlets helically arranged. Each fruitlet encloses a seed. The reproductive organs in various stages are found in the same plant, allowing us to understand the development of Yuhania. The occurrence of Yuhania in the Middle Jurassic re-confirms the Jurassic history for angiosperms that has been suggested by other independent research and adds to the on-going study on the early evolution of angiosperms.  相似文献   

7.

Background  

The origin of angiosperms has been under debate since the time of Darwin. While there has been much speculation in past decades about pre-Cretaceous angiosperms, including Archaefructus, these reports are controversial. The earliest reliable fossil record of angiosperms remains restricted to the Cretaceous, even though recent molecular phylogenetic studies suggest an origin for angiosperms much earlier than the current fossil record.  相似文献   

8.
The Yixian Formation (the Lower Cretaceous) of China is world famous for its fossils of early angiosperms. Despite their great diversity, few of these fossils are preserved as whole plants, making our understanding of early angiosperms incomplete. Here, we report a fossil angiosperm, Sinoherba ningchengensis n. gen. n. sp. (Sinoherbaceae n. fam.), from the Yixian Formation of China. The fossil is of a whole plant, including physically connected root with fibrous rootlets, a stem with branches and nodes, leaves with parallel-reticulate veins, and a panicle of female flowers with an ovary surrounded by perianth. Morphological and phylogenetic analyses reveal that Sinoherba is an herbaceous monocot. This fossil underscores the great diversity of angiosperms in the Lower Cretaceous Yixian Formation and an earlier, pre-Cretaceous origin of angiosperms.  相似文献   

9.
A formal classification of the land plants that is compatible with the APG III classification is proposed. Previous classifications inflated taxonomic ranks, particularly of the angiosperms. If the major clades of green algae are recognized as classes, then all land plants, the embryophytes, should be included in a single class, here recognized as Equisitopsida. Accordingly, the 16 major clades of land plants, including the angiosperms, should all be recognized as subclasses, the angiosperms as Magnoliidae. Major clades within the angiosperms are then recognized as superorders. This classification still uses a few informal categories (e.g. eudicots, lamiids, etc.) within the angiosperms because this is convenient. Two new names are established: Amborellanae and Austrobaileyanae. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 122–127.  相似文献   

10.
Although flowers, leaves, and stems of the angiosperms have understandably received more attention than roots, the growing root tips, or root apical meristems (RAMs), are organs that could provide insight into angiosperm evolution. We studied RAM organization across a broad spectrum of angiosperms (45 orders and 132 families of basal angiosperms, monocots, and eudicots) to characterize angiosperm RAMs and cortex development related to RAMs. Types of RAM organization in root tips of flowering plants include open RAMs without boundaries between some tissues in the growing tip and closed RAMs with distinct boundaries between apical regions. Epidermis origin is associated with the cortex in some basal angiosperms and monocots and with the lateral rootcap in eudicots and other basal angiosperms. In most angiosperm RAMs, initials for the central region of the rootcap, or columella, are distinct from the lateral rootcap and its initials. Slightly more angiosperm families have exclusively closed RAMs than exclusively open RAMs, but many families have representatives with both open and closed RAMs. Root tips with open RAMs are generally found in angiosperm families considered sister to other families; certain open RAMs may be ancestral in angiosperms.  相似文献   

11.
黑木耳复合群中种类学名说明   总被引:2,自引:0,他引:2  
吴芳  戴玉成 《菌物学报》2015,34(4):604-611
黑木耳在我国已经有1 000多年栽培历史,是我国最重要的栽培真菌之一,多年来我国黑木耳的学名一直使用模式产地为欧洲的Auricularia auricula-judae。最近的研究表明A. auricula-judae实际为一复合种,该复合种在全球范围内有5个种。其中A. auricula-judae仅分布于欧洲;美洲有2个种,生长在针叶树上的美洲木耳A. americana和生长在阔叶树上的尚未命名的木耳。中国该类群有3个种:自然分布和栽培最广泛的黑木耳的学名应为A. heimuer,此外,短毛木耳A. villosula在我国东北也广泛分布,并有少量栽培,生长针叶树上的木耳为美洲木耳A. americana,主要分布于中国东北和华北。  相似文献   

12.
Recent attempts to address the long-debated 'origin' of the angiosperms depend on a phylogenetic framework derived from a matrix of taxa versus characters; most assume that empirical rigour is proportional to the size of the matrix. Sequence-based genotypic approaches increase the number of characters (nucleotides and indels) in the matrix but are confined to the highly restricted spectrum of extant species, whereas morphology-based approaches increase the number of phylogenetically informative taxa (including fossils) at the expense of accessing only a restricted spectrum of phenotypic characters. The two approaches are currently delivering strongly contrasting hypotheses of relationship. Most molecular studies indicate that all extant gymnosperms form a natural group, suggesting surprisingly early divergence of the lineage that led to angiosperms, whereas morphology-only phylogenies indicate that a succession of (mostly extinct) gymnosperms preceded a later angiosperm origin. Causes of this conflict include: (i) the vast phenotypic and genotypic lacuna, largely reflecting pre-Cenozoic extinctions, that separates early-divergent living angiosperms from their closest relatives among the living gymnosperms; (ii) profound uncertainty regarding which (a) extant and (b) extinct angiosperms are most closely related to gymnosperms; and (iii) profound uncertainty regarding which (a) extant and (b) extinct gymnosperms are most closely related to angiosperms, and thus best serve as 'outgroups' dictating the perceived evolutionary polarity of character transitions among the early-divergent angiosperms. These factors still permit a remarkable range of contrasting, yet credible, hypotheses regarding the order of acquisition of the many phenotypic characters, reproductive and vegetative, that distinguish 'classic' angiospermy from 'classic' gymnospermy. The flower remains ill-defined and its mode (or modes) of origin remains hotly disputed; some definitions and hypotheses of evolutionary relationships preclude a role for the flower in delimiting the angiosperms. We advocate maintenance of parallel, reciprocally illuminating programmes of morphological and molecular phylogeny reconstruction, respectively supported by homology testing through additional taxa (especially fossils) and evolutionary-developmental genetic studies that explore genes potentially responsible for major phenotypic transitions.  相似文献   

13.
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.  相似文献   

14.
更苏植物是一类在极度干燥条件下组织会迅速脱水后遇水又能很快复苏的植物.极少数被子植物有这种能力,在双子叶植物中尤其罕见,而且脱水时叶绿素含量和叶绿体完整性变化较少,称为叶绿素保持型(HDT).该类植物的复苏机理简单,研究方便,因而得到更广泛注意.更苏被子植物光合作用的最新研究进展说明,光化学活性是研究更苏植物脱水复苏生理状态的灵敏指标.和普通植物一样,在光下,更苏被子植物的光化学活性随着叶片失水而受到抑制,但奇怪的是在失去95%以上的水分后复水仍可迅速复活.在脱水过程中叶黄素循环和抗氧化系统的上调以及光合膜完整性和稳定性的保持,可能对更苏被子植物的耐脱水性起非常重要的作用.磷酸盐对复苏的影响也表现在复水阶段而且与上述两种保护机理关系不大,因此应该加强更苏被子植物复水阶段的研究.  相似文献   

15.
Ferns are thought to have lower photosynthetic rates than angiosperms and they lack fine stomatal regulation. However, no study has directly compared photosynthesis in plants of both groups grown under optimal conditions in a common environment. We present a common garden comparison of seven angiosperms and seven ferns paired by habitat preference, with the aims of (1) confirming that ferns do have lower photosynthesis capacity than angiosperms and quantifying these differences; (2) determining the importance of diffusional versus biochemical limitations; and (3) analysing the potential implication of leaf anatomical traits in setting the photosynthesis capacity in both groups. On average, the photosynthetic rate of ferns was about half that of angiosperms, and they exhibited lower stomatal and mesophyll conductance to CO2 (gm), maximum velocity of carboxylation and electron transport rate. A quantitative limitation analysis revealed that stomatal and mesophyll conductances were co‐responsible for the lower photosynthesis of ferns as compared with angiosperms. However, gm alone was the most constraining factor for photosynthesis in ferns. Consistently, leaf anatomy showed important differences between angiosperms and ferns, especially in cell wall thickness and the surface of chloroplasts exposed to intercellular air spaces.  相似文献   

16.
Many key aspects of early angiosperms are poorly known, including their ecophysiology and associated habitats. Evidence for fast-growing, weedy angiosperms comes from the Early Cretaceous Potomac Group, where angiosperm fossils, some of them putative herbs, are found in riparian depositional settings. However, inferences of growth rate from sedimentology and growth habit are somewhat indirect; also, the geographic extent of a weedy habit in early angiosperms is poorly constrained. Using a power law between petiole width and leaf mass, we estimated the leaf mass per area (LMA) of species from three Albian (110-105 Ma) fossil floras from North America (Winthrop Formation, Patapsco Formation of the Potomac Group, and the Aspen Shale). All LMAs for angiosperm species are low (<125 g/m(2); mean = 76 g/m(2)) but are high for gymnosperm species (>240 g/m(2); mean = 291 g/m(2)). On the basis of extant relationships between LMA and other leaf economic traits such as photosynthetic rate and leaf lifespan, we conclude that these Early Cretaceous landscapes were populated with weedy angiosperms with short-lived leaves (<12 mo). The unrivalled capacity for fast growth observed today in many angiosperms was in place by no later than the Albian and likely played an important role in their subsequent ecological success.  相似文献   

17.
Partial sequences of the rpoC1 gene from two species of angiosperms and three species of gymnosperms (8330 base pairs) were determined and compared. The data obtained support the hypothesis that angiosperms and gymnosperms are monophyletic and none of the recent groups of the latter is sister to angiosperms. Received: 20 November 1998 / Accepted: 26 April 1999  相似文献   

18.
更苏被子植物的光合作用   总被引:4,自引:0,他引:4  
更苏植物是一类在极度干燥条件下组织会迅速脱水后遇水又能很快复苏的植物。极少数被子植物有这种能力,在双子叶植物中尤其罕见,而且脱水时叶绿素含量和叶绿体完整性变化较少,称为叶绿素保持型(HDT)。该类植物的复苏机理简单,研究方便,因而得到更广泛注意。更苏被子植物光合作用的最新研究进展说明,光化学活性是研究更苏植物脱水复苏生理状态的灵敏指标。和普通植物一样,在光下,更苏被子植物的光化学活性随着叶片失水而受到抑制,但奇怪的是在失去95%以上的水分后复水仍可迅速复活。在脱水过程中叶黄素循环和抗氧化系统的上调以及光合膜完整性和稳定性的保持,可能对更苏被子植物的耐脱水性起非常重要的作用。磷酸盐对复苏的影响也表现在复水阶段而且与上述两种保护机理关系不大,因此应该加强更苏被子植物复水阶段的研究。  相似文献   

19.
Angiosperms represent one of the key examples of evolutionary success, and their diversity dwarfs other land plants; this success has been linked, in part, to genome size and phenomena such as whole genome duplication events. However, while angiosperms exhibit a remarkable breadth of genome size, evidence linking overall genome size to diversity is equivocal, at best. Here, we show that the rates of speciation and genome size evolution are tightly correlated across land plants, and angiosperms show the highest rates for both, whereas very slow rates are seen in their comparatively species-poor sister group, the gymnosperms. No evidence is found linking overall genome size and rates of speciation. Within angiosperms, both the monocots and eudicots show the highest rates of speciation and genome size evolution, and these data suggest a potential explanation for the megadiversity of angiosperms. It is difficult to associate high rates of diversification with different types of polyploidy, but it is likely that high rates of evolution correlate with a smaller genome size after genome duplications. The diversity of angiosperms may, in part, be due to an ability to increase evolvability by benefiting from whole genome duplications, transposable elements and general genome plasticity.  相似文献   

20.
The flowers of Illicium floridanum are pollinated by a wide variety of insects, particularly Diptera that emerge from the litter and stream in early spring. Coleoptera rarely visit the flowers. It is suggested that the mode of pollination is ancient and may also exist in species of primitive angiosperms in the South Pacific. Illicium floridanum is self-incompatible and possesses features of a gametophytically controlled incompatibility system. As a result of asexual reproduction, a lack of long-distance dispersal of pollen and self-incompatibility, fruit production is very low. This pattern of reproduction is found in other species of primitive angiosperms; incompatibility mechanisms which undoubtedly aided the angiosperms to become dominant may now be one of the major factors responsible for their extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号