首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using affinity chromatography on DNAase I-Sepharose, an actin-like protein was isolated from rat liver mitochondria and purified 60-fold. SDS electrophoresis in polyacrylamide gel revealed that the protein migrated with muscle actin and thus had the molecular weight of 42 000 Da. Evidence for the actin-like nature of the mitochondrial protein could be obtained from the fact that the protein inhibited the activity of pancreatic DNAase I which, similar to the smooth muscle protein, was less conspicuous than that of its muscle counterpart. Unlike striated muscle actin but similar to the smooth muscle protein, the mitochondrial actin weakly stimulated the Mg-ATPase activity of rabbit skeletal muscle myosin. After manyfold washing of the mitochondria with isotonic isolation media, the content of the actin-like protein remained unchanged, which indirectly points to the presence of insignificant cytoplasmic actin contaminations. During isoelectrofocusing, the mitochondrial actin-like protein yielded two forms, i. e., beta- and gamma-isoactins, whose ratio was 8:1. The pI values for the beta- and gamma-isoforms were 5.52 and 5.59, respectively. The identical position of the absorption spectra (260 nm) and fluorescence excitation spectra (around 280 nm) maxima of the actin-like protein and smooth and skeletal muscle actins testify to their homology.  相似文献   

2.
The mitochondrial enzyme cytochrome c oxidase (COX) in eukaryotes consists of at least seven subunits, three of which (I-III) are encoded by mitochondrial DNA (mitDNA) and the others (IV-VII) by the nuclear genome. There is increasing evidence that COX in mammals exists in multiple tissue-specific forms, presumably specified by nuclearly encoded subunits. We performed immunologic studies in human cardiac and skeletal muscle, using a monoclonal antibody raised against subunit IV of COX purified from human cardiac muscle. In immunotitration studies, the antibody bound with high affinity to mitochondria from cardiac muscle, but reacted only weakly with mitochondria from skeletal muscle. Similarly, immunocytochemical studies showed prominent mitochondrial staining in frozen sections of heart, but no staining in sections of mature skeletal muscle. Although this antibody did not stain mitochondria in mature skeletal muscle, it clearly stained mitochondria in myoblasts and immature myotubes of human muscle cultures, suggesting that mitochondria in immature muscle cells are different from those in mature muscle, and similar to heart mitochondria. Immunotitration data using either native or denatured COX protein from heart or skeletal muscle showed similar immunoreactivity. These studies indicate that the epitope for recognition by this antibody is exposed in mitochondria from heart and immature muscle cells, but masked in mitochondria from mature skeletal muscle.  相似文献   

3.
TE (tissue engineering) of skeletal muscle is a promising method to reconstruct loss of muscle tissue. This study evaluates MSCs (mesenchymal stem cells) as new cell source for this application. As a new approach to differentiate the MSCs towards the myogenic lineage, co‐cultivation with primary myoblasts has been developed and the myogenic potential of GFP (green fluorescent protein)‐transduced rat MSC co‐cultured with primary rat myoblasts was assessed by ICC (immunocytochemistry). Myogenic potential of MSC was analysed by ICC, FACS and qPCR (quantitative PCR). MSC—myoblast fusion phenomena leading to hybrid myotubes were evaluated using a novel method to evaluate myotube fusion ratios based on phase contrast and fluorescence microscopy. Furthermore, MSC constitutively expressed the myogenic markers MEF2 (myogenic enhancer factor 2) and α‐sarcomeric actin, and MEF2 expression was up‐regulated upon co‐cultivation with primary myoblasts and the addition of myogenic medium supplements. Significantly higher numbers of MSC nuclei were involved in myotube formations when bFGF (basic fibroblast growth factor) and dexamethasone were added to co‐cultures. In summary, we have determined optimal co‐culture conditions for MSC myogenic differentiation up to myotube formations as a promising step towards applicability of MSC as a cell source for skeletal muscle TE as well as other muscle cell‐based therapies.  相似文献   

4.
We elicited antibodies in rabbits to actin purified from body wall muscle of the marine mollusc, Aplysia californica. We found that this antiactin has an unusual specificity: in addition to reacting with the immunogen, it recognizes cytoplasmic vertebrate actins but not myofibrillar actin. Radioimmunoassay showed little or no cross-reaction with actin purified from either chicken gizzard or rabbit skeletal muscle. Immunocytochemical studies with human fibroblasts and L6 myoblasts revealed intense staining of typical cytoplasmic cables. Myofibrils were not stained after treatment of human and frog skeletal muscle with the antibody, although the distribution of immunofluorescence suggested that cytoplasmic actin is associated with membrane systems in the muscle fiber. The antibody may therefore be especially suited for studying the localization of cytoplasmic actin in skeletal muscle cells even in the presence of a great excess of the myofibrillar form.  相似文献   

5.
Expression of vimentin, desmin, alpha-sarcomeric and alpha-smooth muscle actins in embryonic tissues of rat and mice was examined using an immunohistochemical approach. The results showed a similarity in the expression of desmin and alpha-actin isoforms (alpha-sr and alpha-sm) in skeletal muscle cells during murine feto-embryonic development. In the two species, coexpression of alpha-sr and alpha-sm actins has been observed in cardiomyoblasts, myotomal myoblasts and myotubes. The intensity of alpha-sm actin expression decreased during the terminal steps of myogenesis and disappeared completely in mature cardiomyocytes and myofibres. Desmin was expressed in all prefusion myoblasts (type 1 and 2 myoblasts), myotubes, and in myofibres. The appearance of desmin in myoblasts of somites preceded by a few hours the expression of the alpha-actins (alpha-sr and alpha-sm). Our study on vimentin expression, limited to rat embryos, revealed that somite premyoblasts expressed only vimentin, type 1 myoblasts expressed vimentin and desmin, and type 2 myoblasts (rhabdomyoblasts) expressed desmin and alpha-actins (alpha-sr and alpha-sm). Our study demonstrates the resemblance between feto-embryonic myogenesis and myogenic neoplastic differentiation: desmin appears before the alpha-actins in embryonic myoblasts, and can be considered as a marker of an initial step in myogenic differentiation. alpha-sm actin, considered as a striated muscle cell feto-embryonic actin, is expressed transiently in skeletal myoblasts and cardiomyoblasts during development and reappears during neoplastic transformation of skeletal muscle.  相似文献   

6.
Myogenesis is accompanied by an intensive metabolic remodeling. We investigated the mitochondrial reactive oxygen species (ROS) generation at different levels of skeletal muscle differentiation: in C2C12 myoblasts, in C2C12 myotubes and in adult mouse skeletal muscle. Differentiation was accompanied by an increase in mitochondrial content and respiratory chain activity. The detected ROS production levels correlated with mitochondrial content, being the lowest in the myoblasts. Unlike the adult skeletal muscle, myoblast ROS production was significantly stimulated by the complex I inhibitor rotenone. Our results show that mitochondria are an important ROS source in skeletal muscle cells. The substantial changes in mitochondrial ROS synthesis during skeletal muscle differentiation can be explained by intensive bioenergetic remodeling.  相似文献   

7.
To examine the possible role of DNA methylation in the modulation of expression of genes involved in the differentiation of muscle cells, we compared the methylation state of a number of CpG sites in the rat skeletal muscle actin and myosin light chain 2 genes, in muscle and nonmuscle cells, and in proliferating myoblasts and differentiated myotubes of the myogenic cell line L8. No correlation was detected between the state of methylation of these sites and the expression of the two genes. Essentially the same pattern of DNA methylation was observed, in the sites examined, in DNA from muscle, kidney and stomach. In DNA extracted from cultures of proliferating mononucleated myoblasts, as well as from differentiated multinucleated fibers of the myogenic cell line L8, the two genes were more methylated than in other tissues.  相似文献   

8.
Summary FITC-labelled antibodies against native actin from chicken gizzard smooth muscle (Gröschel-Stewart et al., 1976) have been used to stain cultures of guinea-pig vas deferens and taenia coli, rabbit thoracic aorta, rat ventricle and chick skeletal muscle. The I-band of myofibrils of cardiac muscle cells and skeletal muscle myotubes stains intensely. In isolated smooth muscle cells, the staining is located exclusively on long, straight, non-interrupted fibrils which almost fill the cell. Smooth muscle cells which have undergone morphological dedifferentiation to resemble fibroblasts with both phase-contrast microscopy and electronmicroscopy still stain intensely with the actin antibody. In those muscle cultures which contain some fibroblasts or endothelial cells, the non-muscle cells are not stained with the actin antibody even when the reactions are carried out at 37° C for 1 h or after glycerination. Prefusion skeletal muscle myoblasts also do not stain with this antibody.It is concluded that the actin antibody described in this report is directed against a particular sequence of amino acids in muscle actin which is not homologous with non-muscle actin. The usefulness of this antibody in determining the origin of cells in certain pathological conditions such as atherosclerosis is discussed.This work was supported by the Life Insurance Medical Research Fund of Australia and New Zealand, the National Heart Foundation of Australia, the Deutsche Forschungsgemeinschaft and the Wellcome Trust (London). We thank Janet D. McConnell for excellent technical assistance  相似文献   

9.
Thy-1 antigen is a well-characterized cell-surface glycoprotein known to be variably expressed in many different tissues, including lymphocytes, brain, and muscle. Its function remains unknown. In skeletal muscle, both in vivo and in vitro, the antigen has been reported on immature but not on adult tissue, and its disappearance corresponds roughly to the time of myoblast fusion. Using monoclonal H36 antibody to identify myoblasts unambiguously, we demonstrate here that Thy-1 is expressed only on a small (less than 1%) fraction of rat skeletal muscle myoblasts in heterogeneous primary cultures, but the number of myoblasts that express Thy-1 rises to a steady level of about 70% when fibroblasts are removed from secondary cultures. Restitution of fibroblasts or growth of purified myoblasts in medium conditioned by fibroblasts greatly suppresses this increase in myoblast Thy-1 expression. Thus an interaction between fibroblasts and myoblasts, mediated by a soluble nondialyzable molecule, modulates expression of Thy-1 on the myoblast outer membrane.  相似文献   

10.
The control of gene expression during terminal myogenesis was explored in heterokaryons between differentiated and undifferentiated myogenic cells by analyzing the formation of species specific myosin light chains of chick and rat skeletal muscle. Dividing L6 rat myoblasts served as the biochemically undifferentiated parent. The differentiated parental cells were mononucleated muscle cells (myocytes) that were obtained from primary cultures of embryonic chick thigh muscle by blocking myotube formation with EGTA and later incubating the postimitotic cells in cytochalasin B. Heterokaryons were isolated by the selective rescue of fusion products between cells previously treated with lethal doses of different cell poisons. 95-99% pure populations of heterokaryons formed between undifferentiated rat myoblasts and differentiated chick myocytes were obtained. The cells were labeled with [35S]methionine, and whole cell extracts were analyzed on two-dimensional polyacrylamide gels. These heterokaryons synthesize the light chain of chick myosin and both embryonic and adult light chains of rat skeletal myosin. Control homokaryons formed by fusing undifferentiated cells to themselves did not synthesize skeletal myosin light chains. Control heterokaryons formed between undifferentiated rat myoblasts and chick fibroblasts also failed to synthesize myosin light chains. These results indicate that differentiated chick muscle cells provide some factor that induces L6 myoblasts to synthesize rat myosin light chains. This system provides a model for investigating the processes by which differentiated cell functions are induced.  相似文献   

11.
The ability of skeletal muscle myoblasts to differentiate in the absence of spontaneous fusion was studied in cultures derived from chicken embryo leg muscle, rat myoblast lines L6 and L8, and the mouse myoblast line G8. Following 48–96 hr of culture in a low-Ca2+ (25 μm), Mg2+-depleted medium, chicken myoblasts exhibited only 3–5% fusion whereas up to 64% of the cells fused in control cultures. Depletion of Mg2+ led to preferential elimination of fibroblasts, with the result that 97% of the mononucleated cells remaining at 120 hr exhibited a bipolar morphology and stained with antibodies directed against M-creatine kinase, skeletal muscle myosin, and desmin. Mononucleated myoblasts rarely showed visible cross-striations or M-line staining with anti-myomesin unless the medium was supplemented with 0.81 mM Mg2+, suggesting that Mg2+ plays a role in sarcomere assembly. Conditions of Ca2+ and Mg2+ depletion inhibited myoblast fusion in the rodent cell lines as well, but mononucleated myoblasts failed to differentiate under these conditions. Differentiated individual myoblasts from rat cell lines and from chicken cell cultures were obtained when fusion was inhibited by growth in cytochalasin B (CB). CB-treated rat myoblast cultures accumulated MM-CK to nearly twice the specific activity found in extensively fused control cultures of comparable age. Spherical cells which accumulated during CB treatment were isolated and shown to contain nearly eight times the CK specific activity present in nonspherical cells from the same cultures. Approximately 90% of these cells exhibited immunofluorescent staining with antibodies to skeletal muscle myosin, failed to incorporate [3H]thymidine or to form colonies in clonal subculture, and thus represent terminally differentiated rat myoblasts. Quantitative microfluorometric DNA measurements on individual nuclei demonstrated that the terminally differentiated myoblasts obtained in these experiments from both chicken and rat contain 2cDNA levels, suggesting arrest in the G0 stage of the cell cycle.  相似文献   

12.
13.
alpha-smooth muscle actin (SMA) is typically not present in post-embryonic skeletal muscle myoblasts or skeletal muscle fibers. However, both primary myoblasts isolated from neonatal mouse muscle tissue, and C2C12, an established myoblast cell line, produced SMA in culture within hours of exposure to differentiation medium. The SMA appeared during the cells' initial elongation, persisted through differentiation and fusion into myotubes, remained abundant in early myotubes, and was occasionally observed in a striated pattern. SMA continued to be present during the initial appearance of sarcomeric actin, but disappeared shortly thereafter leaving only sarcomeric actin in contractile myotubes derived from primary myoblasts. Within one day after implantation of primary myoblasts into mouse skeletal muscle, SMA was observed in the myoblasts; but by 9 days post-implantation, no SMA was detectable in myoblasts or muscle fibers. Thus, both neonatal primary myoblasts and an established myoblast cell line appear to similarly reprise an embryonic developmental program during differentiation in culture as well as differentiation within adult mouse muscles.  相似文献   

14.
15.
The production of immunologically and biologically active somatomedin activity from isolated myoblasts and fibroblasts from fetal rats of 21 days gestational age was investigated. Myoblast-rich cell populations were derived from primary cultures of dispersed muscle cells by the tendency of myoblasts to become detached from the culture dish in the presence of cytochalasin B. Fibroblasts were obtained from fetal muscle. Culture medium conditioned by exposure to myoblasts for 48 hours produced an increased incorporation of both [35S]sulphate and [3H]thymidine by explants of fetal rat costal cartilage in vitro compared to fresh medium. Myoblast-conditioned medium also contained somatomedin-C-like immunoreactivity which diluted in parallel with partially purified human somatomedin-C (3,271 +/- 446 mU/mg cell protein; mean +/- SEM, seven experiments). Medium conditioned by exposure to fetal rat fibroblasts did not promote isotope uptake by fetal rat cartilage above control values, and contained only low levels of somatomedin-C-like immunoreactivity (343 +/- 89 mU/mg cell protein, three experiments). The release of both somatomedin bioactivity and immunoreactivity into conditioned medium was significantly reduced by the incubation of myoblasts in the presence of rat growth hormone (100 ng/ml and 500 ng/ml). We conclude that fetal rat myoblasts released growth factor activity during culture which exhibited biological and immunologic characteristics of somatomedin. Since the bioactivity was demonstrated on skeletal tissues from rat fetuses of the same gestational age as those that yielded myoblasts such growth factor release may be physiological.  相似文献   

16.
Actin was purified from rat sarcoma-45 by using affinity chromatography on DNase I agarose. Actin was detected in the soluble and cytoskeletal fractions. The molecular mass of the protein was found to be equal to 45 kDa. The tumour actin specifically reacted with the antibody against skeletal muscle actin, inhibited the DNAase I activity and activated in the fibrillar state Mg(2+)-ATPases of sarcoma-45 and skeletal muscle myosins. The activating effect of the tumour protein was lower than that of its skeletal muscle counterpart. V8-protease peptide mapping revealed a similarity between tumour and brain actins. Sarcoma-45 actin was found to contain beta- and gamma-actin isoforms and an unusual isoform which appeared to be more acidic than the alpha-actin isoform.  相似文献   

17.
Specific DNA fragments complementary to the 3' untranslated regions of the beta-, alpha-cardiac, and alpha-skeletal actin mRNAs were used as in situ hybridization probes to examine differential expression and distribution of these mRNAs in primary myogenic cultures. We demonstrated that prefusion bipolar-shaped cells derived from day 3 dissociated embryonic somites were equivalent to myoblasts derived from embryonic day 11-12 pectoral tissue with respect to the expression of the alpha-cardiac actin gene. Fibroblasts present in primary muscle cultures were not labeled by the alpha-cardiac actin gene probe. Since virtually all of the bipolar cells express alpha-cardiac actin mRNA before fusion, we suggest that the bipolar phenotype may distinguish a committed myogenic cell type. In contrast, alpha-skeletal actin mRNA accumulates only in multinucleated myotubes and appears to be regulated independently from the alpha-cardiac actin gene. Accumulation of alpha- skeletal but not alpha-cardiac actin mRNA can be blocked by growth in Ca2+-deficient medium which arrests myoblast fusion. Thus, the sequential appearance of alpha-cardiac and then alpha-skeletal actin mRNA may result from factors that arise during terminal differentiation. Finally, the beta-actin mRNA was located in both fibroblasts and myoblasts but diminished in content during myoblast fusion and was absent from differentiated myotubes. It appears that in primary myogenic cultures, an asynchronous stage-dependent induction of two different alpha-striated actin mRNA species occurs concomitant with the deinduction of the nonmuscle beta-actin gene.  相似文献   

18.
《The Journal of cell biology》1986,103(6):2173-2183
We have used a monoclonal antibody (CL2) directed against striated muscle isoforms of tropomyosin to selectively isolate a class of microfilaments (skeletal tropomyosin-enriched microfilaments) from differentiating muscle cells. This class of microfilaments differed from the one (tropomyosin-enriched microfilaments) isolated from the same cells by a monoclonal antibody (LCK16) recognizing all isoforms of muscle and nonmuscle tropomyosin. In myoblasts, the skeletal tropomyosin-enriched microfilaments had a higher content of alpha-actin and phosphorylated isoforms of tropomyosin as compared with the tropomyosin-enriched microfilaments. Moreover, besides muscle isoforms of actin and tropomyosin, significant amounts of nonmuscle isoforms of actin and tropomyosin were found in the skeletal tropomyosin-enriched microfilaments of myoblasts and myotubes. These results suggest that different isoforms of actin and tropomyosin can assemble into the same set of microfilaments, presumably pre-existing microfilaments, to form the skeletal tropomyosin-enriched microfilaments, which will eventually become the thin filaments of myofibrils. Therefore, the skeletal tropomyosin-enriched microfilaments detected here may represent an intermediate class of microfilaments formed during thin filament maturation. Electron microscopic studies of the isolated microfilaments from myoblasts and myotubes showed periodic localization of tropomyosin molecules along the microfilaments. The tropomyosin periodicity in the microfilaments of myoblasts and myotubes was 35 and 37 nm, respectively, whereas the nonmuscle tropomyosin along chicken embryo fibroblast microfilaments had a 34-nm repeat.  相似文献   

19.
20.
This investigation was conducted to assess the effects of mouse serum on chick skeletal muscle cell differentiation. In light of earlier findings of altered membrane phospholipid metabolism following mouse serum treatment of Friend erythroleukemic and chick chondrogenic cells, it was of interest to determine whether similar changes would modulate the fusion of mononucleated myoblasts, which is necessary for the formation of multinucleated skeletal muscle fibers. When mouse serum is added to low density cultures of enriched chick myoblasts shortly following cell attachment to the substratum, fusion is inhibited and neutral lipid accumulation ensues. There is an early inhibitory effect on DNA synthesis but not on protein synthesis. There is no increase in the uptake of 2-deoxyglucose following insulin stimulation of the cells, which suggests that while the cells are accumulating large amounts of lipid, they are not being converted into typical adipocytes. Finally, even in cultures of mouse serum-treated cells that undergo significant fusion, one observes thinner myotubes that do not spontaneously contract as do those of control cultures, as well as a disorganization of fluorescently stained actin and myosin myofilaments. These findings demonstrate that mouse serum acts in a dose-dependent manner, is not cytotoxic to the cells, but is capable of modulating normal developmental events of myoblasts as reported for other cell and tissue types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号