首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
We report the results of two fully automated structure prediction pipelines, “Zhang-Server” and “QUARK”, in CASP13. The pipelines were built upon the C-I-TASSER and C-QUARK programs, which in turn are based on I-TASSER and QUARK but with three new modules: (a) a novel multiple sequence alignment (MSA) generation protocol to construct deep sequence-profiles for contact prediction; (b) an improved meta-method, NeBcon, which combines multiple contact predictors, including ResPRE that predicts contact-maps by coupling precision-matrices with deep residual convolutional neural-networks; and (c) an optimized contact potential to guide structure assembly simulations. For 50 CASP13 FM domains that lacked homologous templates, average TM-scores of the first models produced by C-I-TASSER and C-QUARK were 28% and 56% higher than those constructed by I-TASSER and QUARK, respectively. For the first time, contact-map predictions demonstrated usefulness on TBM domains with close homologous templates, where TM-scores of C-I-TASSER models were significantly higher than those of I-TASSER models with a P-value <.05. Detailed data analyses showed that the success of C-I-TASSER and C-QUARK was mainly due to the increased accuracy of deep-learning-based contact-maps, as well as the careful balance between sequence-based contact restraints, threading templates, and generic knowledge-based potentials. Nevertheless, challenges still remain for predicting quaternary structure of multi-domain proteins, due to the difficulties in domain partitioning and domain reassembly. In addition, contact prediction in terminal regions was often unsatisfactory due to the sparsity of MSAs. Development of new contact-based domain partitioning and assembly methods and training contact models on sparse MSAs may help address these issues.  相似文献   

2.
A secondary structure has been predicted for the C termini of the fibrinogen β and γ chains from an aligned set of homologous protein sequences using a transparent method that extracts conformational information from patters of variation and conservation, parsing strings, and patterns of amphiphilicity. The structure is modeled to form two domains, the first having a core parallel sheet flanked on one side by at least two helices and on the other by an antiparallel amphiphilic sheet, with an additional helix connecting the two sheets. The second domain is built entirely from β strands. © 1997 Wiley-Liss, Inc.  相似文献   

3.
    
A pair of neural network-based algorithms is presented for predicting the tertiary structural class and the secondary structure of proteins. Each algorithm realizes improvements in accuracy based on information provided by the other. Structural class prediction of proteins nonhomologous to any in the training set is improved significantly, from 62.3% to 73.9%, and secondary structure prediction accuracy improves slightly, from 62.26% to 62.64%. A number of aspects of neural network optimization and testing are examined. They include network overtraining and an output filter based on a rolling average. Secondary structure prediction results vary greatly depending on the particular proteins chosen for the training and test sets; consequently, an appropriate measure of accuracy reflects the more unbiased approach of “jackknife” cross-validation (testing each protein in the database individually).  相似文献   

4.
    
Hamilton N  Burrage K  Ragan MA  Huber T 《Proteins》2004,56(4):679-684
We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two \"windows\" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations.  相似文献   

5.
    
CASP (critical assessment of structure prediction) assesses the state of the art in modeling protein structure from amino acid sequence. The most recent experiment (CASP13 held in 2018) saw dramatic progress in structure modeling without use of structural templates (historically “ab initio” modeling). Progress was driven by the successful application of deep learning techniques to predict inter-residue distances. In turn, these results drove dramatic improvements in three-dimensional structure accuracy: With the proviso that there are an adequate number of sequences known for the protein family, the new methods essentially solve the long-standing problem of predicting the fold topology of monomeric proteins. Further, the number of sequences required in the alignment has fallen substantially. There is also substantial improvement in the accuracy of template-based models. Other areas—model refinement, accuracy estimation, and the structure of protein assemblies—have again yielded interesting results. CASP13 placed increased emphasis on the use of sparse data together with modeling and chemical crosslinking, SAXS, and NMR all yielded more mature results. This paper summarizes the key outcomes of CASP13. The special issue of PROTEINS contains papers describing the CASP13 assessments in each modeling category and contributions from the participants.  相似文献   

6.
    
The accuracy of sequence-based tertiary contact predictions was assessed in a blind prediction experiment at the CASP13 meeting. After 4 years of significant improvements in prediction accuracy, another dramatic advance has taken place since CASP12 was held 2 years ago. The precision of predicting the top L/5 contacts in the free modeling category, where L is the corresponding length of the protein in residues, has exceeded 70%. As a comparison, the best-performing group at CASP12 with a 47% precision would have finished below the top 1/3 of the CASP13 groups. Extensively trained deep neural network approaches dominate the top performing algorithms, which appear to efficiently integrate information on coevolving residues and interacting fragments or possibly utilize memories of sequence similarities and sometimes can deliver accurate results even in the absence of virtually any target specific evolutionary information. If the current performance is evaluated by F-score on L contacts, it stands around 24% right now, which, despite the tremendous impact and advance in improving its utility for structure modeling, also suggests that there is much room left for further improvement.  相似文献   

7.
神经网络在蛋白质二级结构预测中的应用   总被引:3,自引:0,他引:3  
介绍了蛋白质二级结构预测的研究意义,讨论了用在蛋白质二级结构预测方面的神经网络设计问题,并且较详尽地评述了近些年来用神经网络方法在蛋白质二级结构预测中的主要工作进展情况,展望了蛋白质结构预测的前景。  相似文献   

8.
    
Performance in the template-based modeling (TBM) category of CASP13 is assessed here, using a variety of metrics. Performance of the predictor groups that participated is ranked using the primary ranking score that was developed by the assessors for CASP12. This reveals that the best results are obtained by groups that include contact predictions or inter-residue distance predictions derived from deep multiple sequence alignments. In cases where there is a good homolog in the wwPDB (TBM-easy category), the best results are obtained by modifying a template. However, for cases with poorer homologs (TBM-hard), very good results can be obtained without using an explicit template, by deep learning algorithms trained on the wwPDB. Alternative metrics are introduced, to allow testing of aspects of structural models that are not addressed by traditional CASP metrics. These include comparisons to the main-chain and side-chain torsion angles of the target, and the utility of models for solving crystal structures by the molecular replacement method. The alternative metrics are poorly correlated with the traditional metrics, and it is proposed that modeling has reached a sufficient level of maturity that the best models should be expected to satisfy this wider range of criteria.  相似文献   

9.
10.
    
Performance in the model refinement category of the 13th round of Critical Assessment of Structure Prediction (CASP13) is assessed, showing that some groups consistently improve most starting models whereas the majority of participants continue to degrade the starting model on average. Using the ranking formula developed for CASP12, it is shown that only 7 of 32 groups perform better than a “naïve predictor” who just submits the starting model. Common features in their approaches include a dependence on physics-based force fields to judge alternative conformations and the use of molecular dynamics to relax models to local minima, usually with some restraints to prevent excessively large movements. In addition to the traditional CASP metrics that focus largely on the quality of the overall fold, alternative metrics are evaluated, including comparisons of the main-chain and side-chain torsion angles, and the utility of the models for solving crystal structures by the molecular replacement method. It is proposed that the introduction of these metrics, as well as consideration of the accuracy of coordinate error estimates, would improve the discrimination between good and very good models.  相似文献   

11.
    
We present the assembly category assessment in the 13th edition of the CASP community-wide experiment. For the second time, protein assemblies constitute an independent assessment category. Compared to the last edition we see a clear uptake in participation, more oligomeric targets released, and consistent, albeit modest, improvement of the predictions quality. Looking at the tertiary structure predictions, we observe that ignoring the oligomeric state of the targets hinders modeling success. We also note that some contact prediction groups successfully predicted homomeric interfacial contacts, though it appears that these predictions were not used for assembly modeling. Homology modeling with sizeable human intervention appears to form the basis of the assembly prediction techniques in this round of CASP. Future developments should see more integrated approaches where subunits are modeled in the context of the assemblies they form.  相似文献   

12.
    
The functional and biological significance of selected CASP13 targets are described by the authors of the structures. The structural biologists discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP13 experiment.  相似文献   

13.
    
A neural network has been used to predict both the location and the type of beta-turns in a set of 300 nonhomologous protein domains. A substantial improvement in prediction accuracy compared with previous methods has been achieved by incorporating secondary structure information in the input data. The total percentage of residues correctly classified as beta-turn or not-beta-turn is around 75% with predicted secondary structure information. More significantly, the method gives a Matthews correlation coefficient (MCC) of around 0.35, compared with a typical MCC of around 0.20 using other beta-turn prediction methods. Our method also distinguishes the two most numerous and well-defined types of beta-turn, types I and II, with a significant level of accuracy (MCCs 0.22 and 0.26, respectively).  相似文献   

14.
    
We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13. Submissions were made by three free-modeling (FM) methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembled fragments produced by a generative neural network, one using scores from a network trained to regress GDT_TS. The third system shows that simple gradient descent on a properly constructed potential is able to perform on par with more expensive traditional search techniques and without requiring domain segmentation. In the CASP13 FM assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2 for the next closest group (an average GDT_TS of 61.4). The system produced high-accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 FM domains. Despite not explicitly using template information, the results in the template category were comparable to the best performing template-based methods.  相似文献   

15.
    
Methods for protein structure prediction are flourishing and becoming widely available to both experimentalists and computational biologists. However, how good are they? What is their range of applicability and how can we know which method is better suited for the task at hand? These are the questions that this review tries to address, by describing the worldwide Critical Assessment of techniques for protein Structure Prediction (CASP) initiative and focusing on the specific problems of assessing the quality of a protein 3D model.  相似文献   

16.
    
Lim Heo  Michael Feig 《Proteins》2020,88(5):637-642
Protein structure prediction has long been available as an alternative to experimental structure determination, especially via homology modeling based on templates from related sequences. Recently, models based on distance restraints from coevolutionary analysis via machine learning to have significantly expanded the ability to predict structures for sequences without templates. One such method, AlphaFold, also performs well on sequences where templates are available but without using such information directly. Here we show that combining machine-learning based models from AlphaFold with state-of-the-art physics-based refinement via molecular dynamics simulations further improves predictions to outperform any other prediction method tested during the latest round of CASP. The resulting models have highly accurate global and local structures, including high accuracy at functionally important interface residues, and they are highly suitable as initial models for crystal structure determination via molecular replacement.  相似文献   

17.
    
Protein target structures for the Critical Assessment of Structure Prediction round 13 (CASP13) were split into evaluation units (EUs) based on their structural domains, the domain organization of available templates, and the performance of servers on whole targets compared to split target domains. Eighty targets were split into 112 EUs. The EUs were classified into categories suitable for assessment of high accuracy modeling (or template-based modeling [TBM]) and topology (or free modeling [FM]) based on target difficulty. Assignment into assessment categories considered the following criteria: (a) the evolutionary relationship of target domains to existing fold space as defined by the Evolutionary Classification of Protein Domains (ECOD) database; (b) the clustering of target domains using eight objective sequence, structure, and performance measures; and (c) the placement of target domains in a scatter plot of target difficulty against server performance used in the previous CASP. Generally, target domains with good server predictions had close template homologs and were classified as TBM. Alternately, targets with poor server predictions represent a mixture of fast evolving homologs, structure analogs, and new folds, and were classified as FM or FM/TBM overlap.  相似文献   

18.
    
Many proteins need to form oligomers to be functional, so oligomer structures provide important clues to biological roles of proteins. Prediction of oligomer structures therefore can be a useful tool in the absence of experimentally resolved structures. In this article, we describe the server and human methods that we used to predict oligomer structures in the CASP13 experiment. Performances of the methods on the 42 CASP13 oligomer targets consisting of 30 homo-oligomers and 12 hetero-oligomers are discussed. Our server method, Seok-assembly, generated models with interface contact similarity measure greater than 0.2 as model 1 for 11 homo-oligomer targets when proper templates existed in the database. Model refinement methods such as loop modeling and molecular dynamics (MD)-based overall refinement failed to improve model qualities when target proteins have domains not covered by templates or when chains have very small interfaces. In human predictions, additional experimental data such as low-resolution electron microscopy (EM) map were utilized. EM data could assist oligomer structure prediction by providing a global shape of the complex structure.  相似文献   

19.
One of the major bottlenecks in many ab initio protein structure prediction methods is currently the selection of a small number of candidate structures for high‐resolution refinement from large sets of low‐resolution decoys. This step often includes a scoring by low‐resolution energy functions and a clustering of conformations by their pairwise root mean square deviations (RMSDs). As an efficient selection is crucial to reduce the overall computational cost of the predictions, any improvement in this direction can increase the overall performance of the predictions and the range of protein structures that can be predicted. We show here that the use of structural profiles, which can be predicted with good accuracy from the amino acid sequences of proteins, provides an efficient means to identify good candidate structures. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
    
Chao Fang  Yi Shang  Dong Xu 《Proteins》2018,86(5):592-598
Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception‐inside‐inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD‐SS. The input to MUFOLD‐SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio‐chemical properties of amino acids, PSI‐BLAST profile, and HHBlits profile. MUFOLD‐SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD‐SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD‐SS outperformed the best existing methods and other deep neural networks significantly. MUFold‐SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号