首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
MicroRNAs are short (approximately 22 nt) regulatory RNA molecules that play key roles in metazoan development and have been implicated in human disease. First discovered in Caenorhabditis elegans, over 2500 microRNAs have been isolated in metazoans and plants; it has been estimated that there may be more than a thousand microRNA genes in the human genome alone. Motivated by the experimental observation of strong conservation of the microRNA let-7 among nearly all metazoans, we developed a novel methodology to characterize the class of such strongly conserved sequences: we identified a non-redundant set of all sequences 20 to 29 bases in length that are shared among three insects: fly, bee and mosquito. Among the few hundred sequences greater than 20 bases in length are close to 40% of the 78 confirmed fly microRNAs, along with other non-coding RNAs and coding sequence.  相似文献   

5.
hunchback regulates the temporal identity of neuroblasts in Drosophila. Here we show that hbl-1, the C. elegans hunchback ortholog, also controls temporal patterning. Furthermore, hbl-1 is a probable target of microRNA regulation through its 3'UTR. hbl-1 loss-of-function causes the precocious expression of adult seam cell fates. This phenotype is similar to loss-of-function of lin-41, a known target of the let-7 microRNA. Like lin-41 mutations, hbl-1 loss-of-function partially suppresses a let-7 mutation. The hbl-1 3'UTR is both necessary and sufficient to downregulate a reporter gene during development, and the let-7 and lin-4 microRNAs are both required for HBL-1/GFP downregulation. Multiple elements in the hbl-1 3'UTR show complementarity to regulatory microRNAs, suggesting that microRNAs directly control hbl-1. MicroRNAs may likewise function to regulate Drosophila hunchback during temporal patterning of the nervous system.  相似文献   

6.
microRNA是一类长约22nt的内源非编码小分子RNA,在线虫、果蝇、家鼠、人体及拟南芥等生物中普遍存在,并对其生长发育起着重要的调控作用。目前通过实验和计算机的方法在植物和动物中发现了越来越多的microRNA。通过对识别和鉴定新microRNA的主要方法策略的总结可以为microRNA今后的研究和发展提供一些思路和启发。  相似文献   

7.
8.
Identification of drought-induced microRNAs in rice   总被引:13,自引:0,他引:13  
  相似文献   

9.
Evolution and function of the extended miR-2 microRNA family   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
MicroRNA functions in animal development and human disease   总被引:49,自引:0,他引:49  
Five years into the 'small RNA revolution' it is hard not to share in the excitement about the rapidly unravelling biology of microRNAs. Since the discovery of the first microRNA gene, lin-4, in the nematode Caenorhabditis elegans, many more of these short regulatory RNA genes have been identified in flowering plants, worms, flies, fish, frogs and mammals. Currently, about 2% of the known human genes encode microRNAs. MicroRNAs are essential for development and this review will summarise our current knowledge of animal microRNA function. We will also discuss the emerging links of microRNA biology to stem cell research and human disease, in particular cancer.  相似文献   

12.
13.
14.
MicroRNAs are small RNAs that regulate protein levels. It is commonly assumed that the expression level of a microRNA is directly correlated with its repressive activity – that is, highly expressed microRNAs will repress their target mRNAs more. Here we investigate the quantitative relationship between endogenous microRNA expression and repression for 32 mature microRNAs in Drosophila melanogaster S2 cells. In general, we find that more abundant microRNAs repress their targets to a greater degree. However, the relationship between expression and repression is nonlinear, such that a 10-fold greater microRNA concentration produces only a 10% increase in target repression. The expression/repression relationship is the same for both dominant guide microRNAs and minor mature products (so-called passenger strands/microRNA* sequences). However, we find examples of microRNAs whose cellular concentrations differ by several orders of magnitude, yet induce similar repression of target mRNAs. Likewise, microRNAs with similar expression can have very different repressive abilities. We show that the association of microRNAs with Argonaute proteins does not explain this variation in repression. The observed relationship is consistent with the limiting step in target repression being the association of the microRNA/RISC complex with the target site. These findings argue that modest changes in cellular microRNA concentration will have minor effects on repression of targets.  相似文献   

15.
MicroRNAs are an abundant class of noncoding RNAs, typically 20-23 nucleotides in length that are often evolutionarily conserved in metazoans and expressed in a cell and tissue specific manner. MicroRNAs exert their gene regulatory activity primarily by imperfectly base pairing to the 3' UTR of their target mRNAs, leading to mRNA degradation or translational inhibition. In cancer, microRNAs are often dysregulated with their expression patterns being correlated with clinically relevant tumor characteristics. Recently, microRNAs were shown to be directly involved in cancer initiation and progression. This review focuses primarily on emerging developments in the microRNA field that impact our understanding of how these molecules contribute to carcinogenesis.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号