首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The nicotinic acetylcholine receptor from Discopyge tschudii electroplax was purified by affinity chromatography on Affi-Gel 401 using bromoacetylcholine as the ligand. Its specific activity was about 4000 pmol 125I-alpha-bungarotoxin/mg protein. SDS-polyacrylamide gel electrophoresis revealed four bands of apparent molecular weights: 41,200, 49,500, 60,000 and 66,300. The amino acid composition of each individual subunit was determined. Native membranes, rich in nicotinic receptor exhibited carbamylcholine-catalysed cation transport (blocked by curare and desensitized by prior incubation with the cholinergic agonist). The functional activity of the purified material could be reconstituted into soybean lecithin liposomes. Our data show that the Discopyge tschudii nicotinic receptor is similar to that from Torpedo californica.  相似文献   

2.
The second beta-like subunit (SBD) is a putative structural subunit of Drosophila melanogaster nicotinic acetylcholine receptors (nAChRs). Here we have produced specific antibodies against SBD to study, which other nAChR subunits can co-assemble with SBD in receptor complexes of the Drosophila nervous system. Immunohistochemical studies in the adult optic lobe revealed that SBD has a distribution similar to that of the alpha-subunit ALS in the synaptic neuropil. The subunits ALS, D(alpha)2 and SBD can be co-purified by alpha-bungarotoxin affinity chromatography. Moreover, anti-SBD antibodies co-precipitate ALS and D(alpha)2 and, vice versa, ALS and D(alpha)2 antibodies co-immunoprecipitate SBD protein. Two-step immunoaffinity chromatography with immobilized antibodies against ALS and D(alpha)2 revealed the existence of nAChR complexes that include ALS, D(alpha)2 and SBD as integral components. Interestingly, the genes encoding these three subunits appear to be directly linked in the Drosophila genome at region 96 A of the third chromosome. In addition, SBD appears to be a component of a different receptor complex, which includes the ARD protein as an additional beta-subunit, but neither ALS nor D(alpha)2 nor the third alpha-subunit D(alpha)3. These findings suggest a considerable complexity of the Drosophila nicotinic receptor system.  相似文献   

3.
The N-terminal extracellular domain (amino acids 1-210; halpha-(1-210)) of the alpha subunit of the human muscle nicotinic acetylcholine receptor (AChR), bearing the binding sites for cholinergic ligands and the main immunogenic region, the major target for anti-AChR antibodies in patients with myasthenia gravis, was expressed in the yeast, Pichia pastoris. The recombinant protein was water-soluble and glycosylated, and fast protein liquid chromatography analysis showed it to be a monomer. halpha-(1-210) bound (125)I-alpha-bungarotoxin with a high affinity (K(d) = 5.1 +/- 2.4 nm), and this binding was blocked by unlabeled d-tubocurarine and gallamine (K(i) approximately 7.5 mm). Interestingly, (125)I-alpha-bungarotoxin binding was markedly impaired by in vitro deglycosylation of halpha-(1-210). Several monoclonal antibodies that show partial or strict conformation-dependent binding to the AChR were able to bind to halpha-(1-210), as did antibodies from a large proportion of myasthenic patients. These results suggest that the extracellular domain of the human AChR alpha subunit expressed in P. pastoris has an apparently near native conformation. The correct folding of the recombinant protein, together with its relatively high expression yield, makes it suitable for structural studies on the nicotinic acetylcholine receptor and for use as an autoantigen in myasthenia gravis studies.  相似文献   

4.
Monoclonal antibodies raised against the nicotinic acetylcholine receptor of Electrophorus electricus electroplaque have been used as probes to characterize putative nicotinic acetylcholine receptors in goldfish brain. One monoclonal antibody (mAb), mAb 47, recognized a protein which binds both (-)-[3H]nicotine and 125I-alpha-bungarotoxin with high affinity. Another monoclonal antibody (mAb 172) recognized a protein which binds (-)-[3H]nicotine but not 125I-alpha-bungarotoxin. Both antibodies precipitated a protein(s) (biosynthetically labeled with [35S]methionine) in the absence, but not in the presence, of excess purified nicotinic acetylcholine receptor from Torpedo nobiliana. The dilution of mAb 47 that precipitated half of the maximum amount of 125I-alpha-bungarotoxin binding protein was the same as that which precipitated half of the maximum amount of (-)-[3H]nicotine binding activity. When used in combination, the two antibodies precipitated more (-)-[3H]nicotine radioactivity than either antibody alone. The (-)-[3H]nicotine and 125I-alpha-bungarotoxin binding component-mAb complexes were characterized by sucrose density centrifugation. In the presence of either mAb 172 or 47, the (-)-[3H] nicotine binding component migrated further into the gradient, but only mAb 47 shifted the 125I-alpha-bungarotoxin peak. Incubation of solubilized brain extract with alpha-bungarotoxin-coupled Sepharose reduced the amount of (-)-[3H]nicotine radioactivity precipitated by mAb 47 but not by mAb 172. These data suggest that the antibodies may recognize distinct subtypes of (-)-nicotine binding sites in goldfish brain, one subtype which binds both 125I-alpha-bungarotoxin and (-)-[3H]nicotine and a second subtype which binds only (-)-[3H] nicotine.  相似文献   

5.
The nicotinic acetylcholine receptor from electrogenic tissue of Torpedo californica was solubilized by tryptic digestion of membrane fragments obtained from autolysed tissue, without use of detergent. The water-soluble acetylcholine receptor was purified by affinity chromatography on a cobra-toxin-Sepharose resin. The purified receptor bound 4000-6000 pmol per mg protein of alpha-[125I]bungarotoxin, and toxin-binding was specifically inhibited by cholinergic ligands. Gel filtration revealed a single molecular species of Stokes radius 125 +/- 10 A and on sucrose gradient centrifugation one major peak was observed of 20-22 S. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and beta-mercaptoethanol revealed two major polypeptides of mol. wt. 30 000 and 48 000.  相似文献   

6.
Nicotinic acetylcholine receptors found in the peripheral and central nervous system differ from those found at the neuromuscular junction. Recently we isolated a cDNA clone encoding the alpha subunit of a neuronal acetylcholine receptor expressed in both the peripheral and central nervous system. In this paper we report the isolation of a cDNA encoding the alpha subunit of a second acetylcholine receptor expressed in the central nervous system. Thus it is clear that there is a family of genes coding for proteins with sequence and structural homology to the alpha subunit of the muscle nicotinic acetylcholine receptor. Members of this gene family are expressed in different regions of the central nervous system and, presumably, code for subtypes of the nicotinic acetylcholine receptor.  相似文献   

7.
We have investigated the mechanisms of assembly and transport to the cell surface of the mouse muscle nicotinic acetylcholine receptor (AChR) in transiently transfected COS cells. In cells transfected with all four subunit cDNAs, AChR was expressed on the surface with properties resembling those seen in mouse muscle cells (Gu, Y., A. F. Franco, Jr., P.D. Gardner, J. B. Lansman, J. R. Forsayeth, and Z. W. Hall. 1990. Neuron. 5:147-157). When incomplete combinations of AChR subunits were expressed, surface binding of 125I-alpha-bungarotoxin was not detected except in the case of alpha beta gamma which expressed less than 15% of that seen with all four subunits. Immunoprecipitation and sucrose gradient sedimentation experiments showed that in cells expressing pairs of subunits, alpha delta and alpha gamma heterodimers were formed, but alpha beta was not. When three subunits were expressed, alpha delta beta and alpha gamma beta complexes were formed. Variation of the ratios of the four subunit cDNAs used in the transfection mixture showed that surface AChR expression was decreased by high concentrations of delta or gamma cDNAs in a mutually competitive manner. High expression of delta or gamma subunits also each inhibited formation of a heterodimer with alpha and the other subunit. These results are consistent with a defined pathway for AChR assembly in which alpha delta and alpha gamma heterodimers are formed first, followed by association with the beta subunit and with each other to form the complete AChR.  相似文献   

8.
ALS and ARD proteins are thought to represent a ligand binding and a structural subunit, respectively, of Drosophila nicotinic acetylcholine receptors (nAChRs). Here, antibodies raised against fusion constructs encompassing specific regions of the ALS and ARD proteins were used to investigate a potential association of these two polypeptides. Both ALS and ARD antisera removed 20-30% of the high-affinity binding sites for the nicotinic antagonist 125I-alpha-bungarotoxin (125I-alpha-Btx) from detergent extracts of fly head membranes. Combinations of both types of antisera also precipitated the same fraction of alpha-Btx binding sites, a result suggesting that both polypeptides are components of the previously defined class I 125I-alpha-Btx binding sites in the Drosophila CNS. 125I-alpha-Btx binding to a MS2 polymerase-ALS fusion protein containing the predicted antagonist binding region showed that the ALS protein indeed constitutes the ligand binding subunit of a nicotinic receptor complex. These data are consistent with neuronal nAChRs in Drosophila containing at least two types of subunits, ligand binding and structural ones.  相似文献   

9.
The nicotinic acetylcholine receptor from electrogenic tissue of Torpedo californica was solubilized by tryptic digestion of membrane fragments obtained from autolysed tissue, without use of detergent. The water-soluble acetylcholine receptor was purified by affinity chromatography on a cobra-toxin-Sepharose resin. The purified receptor bound 4000–6000 pmol per mg protein of α-[125]bungarotoxin, and toxin-binding was specifically inhibited by cholinergic ligands. Gel filtration revealed a single molecular species of Stokes radius 125 ± 10 Å and on sucrose gradient centrifugation one major peak was observed of 20–22 S. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and β-mercaptoethanol revealed two major polypeptides of mol. wt. 30 000 and 48 000.  相似文献   

10.
Immunohistochemical studies have previously shown that both the chick brain and chick ciliary ganglion neurons contain a component which shares antigenic determinants with the main immunogenic region of the nicotinic acetylcholine receptor from electric organ and skeletal muscle. Here we describe the purification and initial characterization of this putative neuronal acetylcholine receptor. The component was purified by monoclonal antibody affinity chromatography. The solubilized component sediments on sucrose gradients as a species slightly larger than Torpedo acetylcholine receptor monomers. It was affinity labeled with bromo[3H]acetylcholine. Labeling was prevented by carbachol, but not by alpha-bungarotoxin. Two subunits could be detected in the affinity-purified component, apparent molecular weights 48 000 and 59 000. The 48 000 molecular weight subunit was bound both by a monoclonal antibody directed against the main immunogenic region of electric organ and skeletal muscle acetylcholine receptor and by antisera raised against the alpha subunit of Torpedo receptor. Evidence suggests that there are two alpha subunits in the brain component. Antisera from rats immunized with the purified brain component exhibited little or no cross-reactivity with Torpedo electric organ or chick muscle acetylcholine receptor. One antiserum did, however, specifically bind to all four subunits of Torpedo receptor. Experiments to be described elsewhere (J. Stollberg et al., unpublished results) show that antisera to the purified brain component specifically inhibit the electrophysiological function of acetylcholine receptors in chick ciliary ganglion neurons without inhibiting the function of acetylcholine receptors in chick muscle cells. All of these properties suggest that this component is a neuronal nicotinic acetylcholine receptor with limited structural homology to muscle nicotinic acetylcholine receptor.  相似文献   

11.
We have used subunit-specific antibodies to identify and to characterize partially the alpha, beta, gamma, and delta subunits of rat skeletal muscle acetylcholine receptor (AChR) on immunoblots. The alpha subunit of rat muscle is a single band of 42 kDa, whereas the beta subunit has an apparent molecular mass of 48 kDa. Both alpha and beta subunits are glycosylated and contain one or more N-linked oligosaccharide chains that are sensitive to endoglycosidase H digestion. The gamma and delta subunits, on the other hand, each appear as doublets on immunoblots, with apparent molecular masses of 52 kDa (gamma), 48 kDa (gamma') and 58 kDa (delta), 53 kDa (delta'), respectively. In each case, the two bands are structurally related and the lower band is probably the partial degradation product of the corresponding upper band. Each of the four gamma and delta polypeptides is N-glycosylated and contains both endoglycosidase H-sensitive and endoglycosidase H-resistant oligosaccharides. When the AChRs purified from embryonic, neonatal, adult, and denervated adult rat muscles were compared, no differences in the mobilities of alpha, beta, or delta subunits on sodium dodecyl sulfate gels were detected among them, either with or without endoglycosidase treatment. The gamma subunits, which were present in AChRs purified from neonatal, embryonic, or denervated rat muscles, were also identical; no gamma subunit was detected, however, in AChRs of normal adult rat muscle.  相似文献   

12.
Each subunit of the nicotinic acetylcholine receptor (AChR) contains two conserved cysteine residues, which are known to form a disulfide bond, in the N-terminal extracellular domain. The role of this retained structural feature in the biogenesis of the AChR was studied by expressing site-directed mutant alpha and beta subunits together with other normal subunits from Torpedo californica AChR in Xenopus oocytes. Mutation of the cysteines at position 128 or 142 in the alpha subunit, or in the beta subunit, did not prevent subunit assembly. All Cys128 and Cys142 mutants of the alpha and beta subunits were able to associate with coexpressed other normal subunits, although associational efficiency of the mutant alpha subunits with the delta subunit was reduced. Functional studies of the mutant AChR complexes showed that the mutations in the alpha subunit abolished detectable 125I-alpha-bungarotoxin (alpha-BuTX) binding in whole oocytes, whereas the mutations in the beta subunit resulted in decreased total binding of 125I-alpha-BuTX and no detectable surface 125I-alpha-BuTX binding. Additionally, all mutant subunits, when co-expressed with the other normal subunits in oocytes, produced small acetylcholine-activated membrane currents, suggesting incorporation of only small numbers of functional mutant AChRs into the plasma membrane. The functional acetylcholine-gated ion channel formed with mutant alpha subunits, but not mutant beta subunits, could not be blocked by alpha-BuTX. Thus, a disulfide bond between Cys128 and Cys142 of the AChR alpha or beta subunits is not needed for acetylcholine-binding. However, this disulfide bond on the alpha subunit is necessary for formation of the alpha-BuTX-binding site. These results also suggest that the most significant effect caused by disrupting the conserved disulfide loop structure is intracellular retention of most of the assembled AChR complexes.  相似文献   

13.
Transient transfection has not been a successful method to express the alpha7 nicotinic acetylcholine receptor such that these receptors are detected on the cell surface. This is not the case for all ligand-gated ion channels. Transient transfection with the 5-hydroxytryptamine type 3 subunit cDNA results in detectable surface receptor expression. Cell lines stably expressing the alpha7 nicotinic acetylcholine receptor produce detectable, albeit variable, levels of surface receptor expression. alpha7 nicotinic acetylcholine receptor surface expression is dependent, at least in part, on cell-specific factors. In addition to factors provided by the cells used for receptor expression, we hypothesize that the surface expression level in transfected cells is an intrinsic property of the receptor protein under study. Employing a set of alpha7-5-hydroxytryptamine type 3 chimeric receptor subunit cDNAs, we expressed these constructs in a transient transfection system and quantified surface receptor expression. We have identified amino acids that control receptor distribution between surface and intracellular pools; surface receptor expression can be manipulated without affecting the total number of receptors. These determinants function independently of the cell line used for expression and the transfection method employed. How these surface expression determinants in the alpha7 nicotinic acetylcholine receptor might influence synaptic efficacy is discussed.  相似文献   

14.
The alpha subunit of the nicotinic acetylcholine receptor (AChR) from Torpedo electric organ and mammalian muscle contains high affinity binding sites for alpha-bungarotoxin and for autoimmune antibodies in sera of patients with myasthenia gravis. To obtain sufficient materials for structural studies of the receptor-ligand complexes, we have expressed part of the mouse muscle alpha subunit as a soluble, secretory protein using the yeast Pichia pastoris. By testing a series of truncated fragments of the receptor protein, we show that alpha211, the entire amino-terminal extracellular domain of AChR alpha subunit (amino acids 1-211), is the minimal segment that could fold properly in yeast. The alpha211 protein was secreted into the culture medium at a concentration of >3 mg/liter. It migrated as a 31-kDa polypeptide with N-linked glycosylation on SDS-polyacrylamide gel. The protein was purified to homogeneity by isoelectric focusing electrophoresis (pI 5.8), and it appeared as a 4.5 S monomer on sucrose gradient at concentrations up to 1 mm ( approximately 30 mg/ml). The receptor domain bound monoclonal antibody mAb35, a conformation-specific antibody against the main immunogenic region of the AChR. In addition, it formed a high affinity complex with alpha-bungarotoxin (k(D) 0.2 nm) but showed relatively low affinity to the small cholinergic ligand acetylcholine. Circular dichroism spectroscopy of alpha211 revealed a composition of secondary structure corresponding to a folded protein. Furthermore, the receptor fragment was efficiently (15)N-labeled in P. pastoris, and proton cross-peaks were well dispersed in nuclear Overhauser effect and heteronuclear single quantum coherence spectra as measured by NMR spectroscopy. We conclude that the soluble AChR protein is useful for high resolution structural studies.  相似文献   

15.
The N-terminal extracellular domain (ECD; amino acids 1-208) of the neuronal nicotinic acetylcholine receptor (AChR) alpha7 subunit, the only human AChR subunit known to assemble as a homopentamer, was expressed as a glycosylated form in the yeast Pichia pastoris in order to obtain a native-like model of the extracellular part of an intact pentameric nicotinic AChR. This molecule, alpha7-ECD, although able to bind the specific ligand alpha-bungarotoxin, existed mainly in the form of microaggregates. Substitution of Cys-116 in the alpha7-ECD with serine led to a decrease in microaggregate size. A second mutant form, alpha7-ECD(C116S,Cys-loop), was generated in which, in addition to the C116S mutation, the hydrophobic Cys-loop (Cys(128)-Cys(142)) was replaced by the corresponding hydrophilic Cys-loop from the snail glial cell acetylcholine-binding protein. This second mutant protein was water-soluble, expressed at a moderate level (0.5 +/- 0.1 mg/liter), and had a size corresponding approximately to a pentamer as judged by gel filtration and electron microscopy studies. It also bound (125)I-alpha-bungarotoxin with relatively high affinity (K(d) = 57 nm), the binding being inhibited by unlabeled alpha-bungarotoxin, d-tubocurarine, or nicotine (K(i) = 0.8 x 10(-7) m, K(i) = 1 x 10(-5) m, and K(i) = 0.9 x 10(-2) m, respectively). All three constructs were expressed as glycosylated forms, but in vitro deglycosylation reduced the heterogeneity without affecting their ligand binding properties. These results show that alpha7-ECD(C116S,Cys-loop) was expressed in P. pastoris as an oligomer (probably a pentamer) with a near native conformation and that its deglycosylated form seems to be suitable starting material for structural studies on the ligand-binding domain of a neurotransmitter receptor.  相似文献   

16.
The acetylcholine receptor of Torpedo electroplax is purified by affinity adsorption using cobra toxin (Naja naja siamensis) covalently attached to Sepharose 4B. Desorption by 10 mm benzoquinonium produces a protein that binds α-[125I]bungarotoxin but not [3H]acetylcholine or other reversible cholinergic ligands. On the other hand, desorption by 1 m carbamylcholine produces an acetylcholine receptor protein that binds [3H]acetylcholine, [3H]decamethonium, [3H]nicotine, [14C]dimethyl-d-tubocurarine, and α-[125I]bungarotoxin. The batch method of affinity adsorption employed gives recoveries of acetylcholine receptor (as measured by acetylcholine binding) averaging 69.2 ± 14.6%. The purity of the isolated acetylcholine receptor protein is estimated to be at best 87% as judged by disc gel electrophoresis and electrofocusing.The purified acetylcholine receptor binds 7.8 nmoles acetylcholine/mg protein based on estimation of protein concentration by a spectrophotometric method. Of these, 2.7 nmoles exhibit high affinity (KD = 0.02 μM) and 5.1 nmoles a lower affinity (KD = 1.97 μM. If the protein concentration used is that obtained by amino acid analysis, the total specific activity would be 10.4 nmoles acetylcholine bound per milligram protein. The subunit carrying one acetylcholine binding site is estimated to range between 83,000 and 112,000 daltons. In contrast to the membrane-bound or Lubrol-solubilized acetylcholine receptor, the purified acetylcholine receptor shows no autoinhibition with acetylcholine concentrations up to 10 μm. Binding of acetylcholine was totally inhibited by α-bungarotoxin or cobra toxin and was partially blocked by four nicotinic drugs, but not by two muscarinic ones. The amino acids of the acetylcholine receptor are analyzed and compared to those of acetylcholinesterase.  相似文献   

17.
We demonstrated previously the involvement of a nicotinic acetylcholine receptor containing an alpha7 subunit in the human sperm acrosome reaction (a modified exocytotic event essential to fertilization). Here we report the presence in human sperm of alpha7, alpha9, alpha3, alpha5, and beta4 nicotinic acetylcholine receptor subunits and the following proteins known to be associated with the receptor in the somatic cell: rapsyn and the tyrosine kinases c-SRC and FYN. The alpha7 subunit appears to exist as a homomer in the posterior post-acrosomal and neck regions of sperm and is probably linked to the cytoskeleton via rapsyn. The alpha3, alpha5, and beta4 subunits are present in the sperm flagellar mid-piece of sperm and possibly exist as alpha3alpha5beta4 and/or alpha3beta4 channels. The alpha9 subunit is present in the sperm mid-piece. We detected the FYN and c-SRC tyrosine kinases in the flagellar mid-piece region. Both co-precipitated only with the nicotinic acetylcholine receptor beta4 subunit. Immunolocalization with a C-terminal SRC kinase antibody, which recognizes several members of SRC kinase family, detected a SRC kinase co-localized with the alpha7 subunit in the neck region of sperm. Immunoprecipitation studies with that antibody demonstrated that the alpha7 subunit is associated with a SRC kinase. Antagonists of tyrosine phosphorylation inhibited the acetylcholine-initiated acrosome reaction, suggesting the involvement of a SRC kinase in the acrosome reaction.  相似文献   

18.
Exploitation of soluble extracellular domains (ECDs) of the nicotinic acetylcholine receptor may provide a route to crystallographic studies aimed at exploring the structure and function of the intact receptor. The first step towards this goal is to manufacture and isolate soluble fragments that fold and assemble to form a functionally relevant complex. The baculovirus insect cell expression system was used to co-express soluble ECDs of all four muscle-type nicotinic acetylcholine receptor subunits (alpha, beta, gamma & delta-ECD) from Torpedo. Protein complexes were purified using either the conformationally sensitive monoclonal antibody mAb35, specific for a folded alpha subunit, or a NiNTA affinity resin, specific for a polyhistidine tag engineered on the delta-ECD. Western blotting with subunit specific antibodies confirmed the co-expression of each ECD and furthermore, indicated that the alpha, beta and gamma-ECDs were being co-purified with the polyhistidine-tagged delta-ECD. Chemical cross-linking was used to show that these co-purified proteins had indeed interacted specifically to form soluble oligomeric complexes. A low-resolution, three-dimensional image of these purified complexes, composed only of ECDs, was obtained by electron microscopy. They were shown to resemble the extracellular vestibule of the native receptor, having the same pseudo-pentameric symmetry, size and shape. Expression of incomplete sets of the four nicotinic acetylcholine receptor ECDs did not yield detectable complexes.  相似文献   

19.
Although neuronal nicotinic acetylcholine receptors from insects have been reconstituted in vitro more than a decade ago, our knowledge about the subunit composition of native receptors as well as their functional properties still remains limited. Immunohistochemical evidence has suggested that two alpha subunits, alpha-like subunit (ALS) and Drosophila alpha2 subunit (Dalpha2), are colocalized in the synaptic neuropil of the Drosophila CNS and therefore may be subunits of the same receptor complex. To gain further understanding of the composition of these nicotinic receptors, we have examined the possibility that a receptor may imbed more than one alpha subunit using immunoprecipitations and electrophysiological investigations. Immunoprecipitation experiments of fly head extracts revealed that ALS-specific antibodies coprecipitate Dalpha2, and vice versa, and thereby suggest that these two alpha subunits must be contained within the same receptor complex, a result that is supported by investigations of reconstituted receptors in Xenopus oocytes. Discrimination between binary (ALS/beta2 or Dalpha2/beta2) and ternary (ALS/Dalpha2/beta2) receptor complexes was made on the basis of their dose-response curve to acetylcholine as well as their sensitivity to alpha-bungarotoxin or dihydro-beta-erythroidine. These data demonstrate that the presence of the two alpha subunits within a single receptor complex confers new receptor properties that cannot be predicted from knowledge of the binary receptor's properties.  相似文献   

20.
The distribution of neuronal and non-neuronal mRNAs for alpha7 and alpha4 nicotinic acetylcholine receptor subunits was investigated in Triturus carnifex tissues using the in situ hybridization approach. The findings reveal a composite pattern of expression only partially overlapping for the two subunits; subunit alpha7 seems to be expressed widely throughout nervous, gastrointestinal and skin tissues, while alpha4 is present in a restricted number of cells of nervous and gastrointestinal tissue. We also found a specific pattern for each subunit; alpha7 and alpha4 associated exclusively to the epidermal glands and hypophysis, respectively; this is probably due to alternative roles that nicotinic acetylcholine receptors play in regulating physiological functions of non-neuronal amphibian tissues, rather than as mere neurotransmitters in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号