首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Family interrelationships among Anisoptera (dragonflies) are unresolved. Molecular markers applied thus far have not been particularly useful for resolving relationships at the family level. Previous morphological studies have depended heavily on characters of wing venation and articulation which are believed to display considerable degrees of homoplasy due to adaptations to different flight modes. Here, we present a comprehensive anatomical dataset of the head morphology of Anisoptera focusing on muscle organization and endoskeletal features covering nearly all families. The characters are illustrated in detail and incorporated into an updated morphological character matrix covering all parts of the dragonfly body. Phylogenetic analysis recovers all families as monophyletic clades except Corduliidae, Gomphidae as sister group to all remaining Anisoptera, and Austropetaliidae as sister group to Aeshnidae (=Aeshnoidea). The position of Petaluridae and Aeshnoidea to each other could not be resolved. Libelluloidea is monophyletic with Neopetalia and Cordulegastridae as first splits. Chlorogomphidae is sister to monophyletic [Synthemistidae + (‘Corduliidae’ + Libellulidae)]. In addition, we applied a recently published formal approach to detect concerted convergence in morphological data matrices and uncover possible homoplasies. Analyses show that especially head and thorax characters may harbour homoplasies. After exclusion of possible homoplastic characters, Gomphidae is corroborated as sister group to all remaining Anisoptera.  相似文献   

2.
S.J. McCauley 《水生昆虫》2013,35(3-4):195-204
Morphology is an important determinant of flight performance and can shape species’ dispersal behaviour. This study contrasted the morphology of flight-related structures in dragonfly species with different dispersal behaviours to gain insights into the relationship between morphology and dispersal behaviour. Specifically, wing size, wing shape and thorax size were compared in three co-occurring species from different clades within the genus Libellula (Odonata: Anisoptera: Libellulidae) to assess how these morphological traits are related to differences in dispersal behaviour and to how broadly their larvae occur across a habitat gradient. Two species had broad larval habitat distributions as well as high rates and distances of dispersal. These two species had relatively larger wings and thoraces than the third species, which was found only in permanent lakes and had limited dispersal. The hind-wings of more dispersive species also had lower aspect ratios and a relatively wider basal portion of the wing than the less dispersive species. Broad hind-wings may facilitate the use of gliding flight and reduce the energetic costs of dispersal. Determining the morphological traits associated with alternative dispersal behaviours may be a useful tool to assess the differential dispersal capacities of species or populations.  相似文献   

3.
Artificial selection on body size in Manduca sexta produced genetic strains with large and small body sizes. The wing-body allometries of these strains differed significantly from the wild type. Selection on small body size led to a change in the scaling of wing and body size without changing the allometry: the wings were smaller relative to the body, but to the same degree at all body sizes. Selection for large body size led to a change in allometry with a decrease in the allometric coefficient, wing size becoming progressively smaller relative to body as body size increased. When larvae were deprived of food so as to produce adults of a range of small body sizes, all strains retained the same allometric coefficient but showed an increase in the scaling factor. Thus individuals starved as larvae had a smaller adult body size but had proportionally larger wings than fed individuals. We analyzed the developmental processes that could give rise to this pattern of allometries. Differences in the relative growth of body and wing disks can account for the differences in the allometric coefficients among the three body size strains. The change in wing-body allometry at large body sizes was primarily due to an insufficient time period for growth. The available time period for growth of the wing imaginal disks poses a significant constraint on the proportional growth of wings, and thus on the evolution of large body size.  相似文献   

4.
Adult dragonflies can be divided into two major groups, perchers and fliers, exhibiting notably different flight behaviour. Previous studies have yielded conflicting results regarding the link between the wing macro-morphology and flight style in these two groups. In this study, we present the first systematic investigation of the micro-morphological differences of wings of percher and flier dragonflies in four closely related species from the family Libellulidae. Our results suggest that the shape and material composition of wing microstructural components and, in particular, the nodus are adapted to facilitate the specific wing functioning in fliers and perchers. The findings further indicate a decreasing trend in the area proportion of the soft resilin-dominated cuticle in the nodus in the series of species from typical perchers to typical fliers. Such a reduction in the resilin proportion in the nodus of fliers is associated with an increase in the wing aspect ratio. The knot-shaped protrusion at the nodus of perchers, which becomes notably smaller in that of strong fliers, is likely to act as a mechanical stopper, avoiding large wing displacements. This study aims to develop a novel framework for future research on the relationship between wing morphology and flight behaviour in dragonflies.  相似文献   

5.
Adipokinetic neuropeptides from the corpora cardiaca of the major families of all three suborders of the Odonata were identified by one or more of the following methods: (1) Isolation of the peptides from a methanolic extract of the corpora cardiaca by liquid chromatography, peak monitoring by fluorescence of the Trp residue and comparison of the retention time with those of known synthetic peptides of Odonata. (2) Hyperlipaemic bioassays of the HPLC-generated fractions either in Locusta migratoria or, in a few cases, in Anax imperator or Orthetrum julia. (3) Sequencing of the isolated, bioactive HPLAC fraction by Edman degradation. (4) Mass spectrometric measurement of the isolated, bioactive fraction. Sequence assignment revealed that the investigated Odonata species always contain only one adipokinetic peptide. This is always an octapeptide. The suborder Zygoptera contains the peptide code-named Psein-AKH, the Anisozygoptera and the families Aeshnidae, Cordulegastridae and Macromiidae of the Anisoptera contain Anaim-AKH, whereas Gomphidae, Corduliidae (with the exception of Syncordulia gracilis) and Libellulidae contain Libau-AKH; one species of Libellulidae has Erysi-AKH, a very conservative modification of Libau-AKH (one point mutation). When these structural data are interpreted in conjunction with existing phylogenies of Odonata, they support the following: (1) Zygoptera are monophyletic and not paraphyletic. (2) Anisozygoptera and Anisoptera are sister groups and contain the ancestral Anaim-AKH which is independently and convergently mutated to Libau-AKH in Gomphidae and Libellulidae. (3) The Corduliidae are of special interest. Only Corduliidae sensu stricto appear to contain Libau-AKH, other species placed into this family by most authorities contain the ancestral Anaim-AKH. Possibly, assignments of AKHs can untangle the paraphyly of this family.  相似文献   

6.
1. Body size is highly correlated with physiological traits, fitness, and trophic interactions. These traits are subject to change if there are widespread reductions of body size with warming temperatures, which is suggested as one of the ‘universal’ ecological responses to climate change. However, general patterns of body size response to temperature in insects have not yet emerged. 2. To address this knowledge gap, we paired the wing length (as a proxy for body size) of 5331 museum specimens of 14 species of British Odonata with historical temperature data. Three sets of analyses were performed: (i) a regression analysis to test for a relationship between wing length and mean seasonal temperature within species and subsequent comparisons across species and suborders; (ii) an investigation of whether the body size of species has an effect on sensitivity to warming temperature; and (iii) a linear-mixed effects model to investigate factors that potentially affect temperature–size response. 3. The regression analysis indicated that wing length is negatively correlated with mean seasonal temperatures for Zygoptera, whereas Anisoptera showed no significant correlation with temperature. 4. There is a significant decline in wing length of all Zygoptera (but not Anisoptera) with collection date, suggesting that individuals emerging later in the season are smaller. 5. Life-cycle type was not important for predicting wing length–temperature responses, whereas sex, species, and suborder were indicated as important factors affecting the magnitude of temperature–size responses in Odonata. 6. Overall, wing lengths of Zygoptera are more sensitive to temperature and collection date than Anisoptera.  相似文献   

7.
Anisopteran leg functions change dramatically from the final larval stadium to the adult. Larvae use legs mainly for locomotion, walking, climbing, clinging, or burrowing. Adults use them for foraging and grasping mates, for perching, clinging to the vegetation, and for repelling rivals. In order to estimate the ontogenetic shift in the leg construction from the larva to the adult, this study quantitatively compared lengths of fore, mid, and hind legs and the relationships between three leg segments, femur, tibia, and tarsus, in larval and adult Anisoptera of the families Gomphidae, Aeshnidae, Cordulegastridae, Corduliidae, and Libellulidae, represented by two species each. We found that leg segment length ratio as well as ontogenetic shift in length ratios was different between families, but rather similar within the families. While little ontogenetic shift occurred in Aeshnidae, there were some modifications in Corduliidae and Libellulidae. The severest shift occurred in Gomphidae and Cordulegastridae, both having burrowing larvae. These two families form a cluster, which is in contrast to their taxonomic relationship within the Anisoptera. Cluster analysis implies that the function of larval legs is primarily responsible for grouping, whereas adult behavior or the taxonomic relationships do not explain the grouping. This result supports the previous hypothesis about the convergent functional shift of leg characters in the dragonfly ontogenesis.  相似文献   

8.
In this study, we sequenced both two mitochondrial genes (COI and 16S rRNA) and nuclear genes (28S rRNA and elongation factor‐1α) from 71 species of Odonata that represent 7 superfamilies in 3 suborders. Phylogenetic testing for each two concatenated gene sequences based on function (ribosomal vs protein‐coding genes) and origin (mitochondrial vs nuclear genes) proved limited resolution. Thus, four concatenated sequences were utilized to test the previous phylogenetic hypotheses of higher taxa of Odonata via Bayesian inference (BI) and maximum likelihood (ML) algorithms, along with the data partition by the BI method. As a result, three slightly different topologies were obtained, but the BI tree without partition was slightly better supported by the topological test. This topology supported the suborders Anisoptera and Zygoptera each being a monophyly, and the close relationship of Anisozygoptera to Anisoptera. All the families represented by multiple taxa in both Anisoptera and Zygoptera were consistently revealed to each be a monophyly with the highest nodal support. Unlike consistent and robust familial relationships in Zygoptera those of Anisoptera were partially unresolved, presenting the following relationships: ((((Libellulidae + Corduliidae) + Macromiidae) + Gomphidae + Aeshnidae) + Anisozygoptera) + (((Coenagrionidae + Platycnemdidae) + Calopterygidae) + Lestidae). The subfamily Sympetrinae, represented by three genera in the anisopteran family Libellulidae, was not monophyletic, dividing Crocothemis and Deielia in one group together with other subfamilies and Sympetrum in another independent group.  相似文献   

9.
In male odonates, both size and fat content are related to territory defence and mating success. Males that are larger and have higher energy reserves win relatively more disputes for territory and attract more females. Wing colour has also been regarded as a mechanism that influences agonistic behaviour between males, as wing pigmentation might be regarded as a sign of male quality. In this study, we analysed whether a set of male physical (body size and wing colour), physiological (body fat content) and behavioural (disputes between males) characteristics were involved in the territory defence and mating behaviour of the neotropical dragonfly Zenithoptera lanei Santos, 1941 (Anisoptera: Libellulidae). Males were characterised as territorial whenever they warded‐off other males and remained in the same place within the pond for two consecutive days. In general, these territorial males were larger and had more abdominal and thoracic fat, engaged in pursuits more frequently, spent more time on sexual behaviour and female guarding, and mated more in comparison to subordinate males. By evaluating whether the percentage of wing area covered by black ink influenced male behaviour, we found that territorial males tended to act aggressively towards other males whose wings were partially painted, and sexually towards females irrespective of wing area painted. In Z. lanei, both body size and fat content play a role in defining territoriality. By subduing competitors and dominating preferred locations within high‐quality sites, these males are likely to be visited by females and engage in mating.  相似文献   

10.
Due to their unique flight mechanism including a direct flight musculature, Odonata show impressive flight skills. Several publications addressed the details of this flight apparatus like: sclerites, wings, musculature, and flight aerodynamics. However, 3D-analysis of the thorax musculature of adult dragonflies was not studied before and this paper allows for a detailed insight. We, therefore, focused on the thorax musculature of adult Anisoptera using micro-computed tomography. Herewith, we present a comparative morphological approach to identify differences within Anisoptera: Aeshnidae, Corduliidae, Gomphidae, and Libellulidae. In total, 54 muscles were identified: 16 prothoracic, 19 mesothoracic, and 19 metathoracic. Recorded differences were for example, the reduction of muscle Idlm4 and an additional muscle IIIdlm1 in Aeshna cyanea, previously described as rudimentary or missing. Muscle Iscm1, which was previously reported missing in all Odonata, was found in all investigated species. The attachment of muscle IIpcm2 in Pantala flavescens is interpreted as a probable adaption to its long-distance migration behaviour. Furthermore, we present a review of functions of the odonatan flight muscles, considering previous publications. The data herein set a basis for functional and biomechanical studies of the flight apparatus and will therefore lay the foundation for a better understanding of the odonatan flight.  相似文献   

11.
Many evolutionary ecological studies have documented sexual dimorphism in morphology or behaviour. However, to what extent a sex-specific morphology is used differently to realize a certain level of behavioural performance is only rarely tested. We experimentally quantified flight performance and wing kinematics (wing beat frequency and wing stroke amplitude) and flight morphology (thorax mass, body mass, forewing aspect ratio, and distance to centre of forewing area) in the butterfly Pararge aegeria (L.) using a tethered tarsal reflex induced flight set-up under laboratory conditions. On average, females showed higher flight performance than males, but frequency and amplitude did not differ. In both sexes, higher flight performance was partly determined by wing beat frequency but not by wing stroke amplitude. Dry body mass, thorax mass, and distance to centre of forewing area were negatively related to wing beat frequency. The relationship between aspect ratio and wing stroke amplitude was sex-specific: females with narrower wings produced higher amplitude whereas males show the opposite pattern. The results are discussed in relation to sexual differences in flight behaviour.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 675–687.  相似文献   

12.
Abstract. We estimated the phylogeny of the order Odonata, based on sequences of the nuclear ribosomal genes 5.8 S, 18S, and ITS1 and 2. An 18S‐only analysis resolved deep relationships well: the order Odonata, as well as suborders Zygoptera and Epiprocta (Anisoptera + Epiophlebia), emerged as monophyletic. Some other deep clades resolved well, but support for more recently diverged clades was generally weak. A second, simultaneous, analysis of the 5.8S and 18S genes with the intergenic spacers ITS1 and 2 resolved some recent branches better, but appeared less reliable for deep clades with, for example, suborder Anisoptera emerging as paraphyletic and Epiophlebia superstes recovered as an Anisopteran, embedded within aeshnoid‐like anisopterans and sister to the cordulegastrids. Most existing family levels in the Anisoptera were confirmed as monophyletic clades in both analyses. However, within the corduliids that form a major monophyletic clade with the Libellulidae, several subclades were recovered, of which at least Macromiidae and Oxygastridae are accepted at the family level. In the Zygoptera, the situation is complex. The lestid‐like family groups (here called Lestomorpha) emerged as sister taxon to all other zygopterans, with Hemiphlebia sister to all other lestomorphs. Platystictidae formed a second monophylum, subordinated to lestomorphs. At the next level, some traditional clades were confirmed, but the tropical families Megapodagrionidae and Amphipterygidae were recovered as strongly polyphyletic, and tended to nest within the clade Caloptera, rendering it polyphyletic. Platycnemididae were also non‐monophyletic, with several representatives of uncertain placement. Coenagrionids were diphyletic. True Platycnemididae and non‐American Protoneurids are closely related, but their relationship to the other zygopterans remains obscure and needs more study. New World protoneurids appeared relatively unrelated to old world + Australian protoneurids. Several recent taxonomic changes at the genus level, based on morphology, were confirmed, but other morphology‐based taxonomies have misclassified taxa considered currently as Megapodagrionidae, Platycnemididae and Amphipterygidae and have underestimated the number of family‐level clades.  相似文献   

13.
LARRY B. SPEAR  DAVID G. AINLEY 《Ibis》1997,139(2):221-233
We studied flight direction relative to wind direction (hereafter referred to as "flight direction"), the relation between wing morphology and flight behaviour and interspecies relationships in flight behaviour among all major seabird taxa. We calculated wing loading and aspect ratios for 98 species from 1029 specimens. Species were sorted into 13 groups on the basis of similarity in patterns of flight direction. The primary flight direction of Pelecaniformes and Charadriiformes was into and across headwinds. The most common flight direction of Procellariiformes was across wind. Seabirds avoided flying with tailwinds. Wing loading and aspect ratios were positively correlated in Procellariiformes, Pelecaniformes and alcids but negatively correlated in larids. In Procellariiformes, incidence of headwind flight and that of tailwind flight were significantly correlated with wing loading and aspect ratio; species with higher wing loading and aspect ratios flew more often into headwinds and less often with tailwinds. In contrast, the proportion of Pelecaniformes and Charadriiformes flying with tailwinds increased significantly with increased wing loading. Our results demonstrate a close link in seabirds between flight behaviour, wing morphology and natural history patterns in terms of distribution, colony location, dispersal and foraging behaviour.  相似文献   

14.
Both wing size and wing shape affect the flight abilities of birds. Intra and inter‐specific studies have revealed a pattern where high aspect ratio and low wing loading favour migratory behaviour. This, however, have not been studied in soaring migrants. We assessed the relationship between the wing size and shape and the characteristics of the migratory habits of the turkey vulture Cathartes aura, an obligate soaring migrant. We compared wing size and shape with migration strategy among three fully migratory, one partially migratory and one non‐migratory (resident) population distributed across the American continent. We calculated the aspect ratio and wing loading using wing tracings to characterize the wing morphology. We used satellite‐tracking data from the migratory populations to calculate distance, duration, speed and altitude during migration. Wing loading, but not aspect ratio, differed among the populations, segregating the resident population from the completely migratory ones. Unlike what has been reported in species using flapping flight during migration, the migratory flight parameters of turkey vultures were not related to the aspect ratio. By contrast, wing loading was related to most flight parameters. Birds with lower wing loading flew farther, faster, and higher during their longer journeys. Our results suggest that wing morphology in this soaring species enables lower‐cost flight, through low wing‐loading, and that differences in the relative sizes of wings may increase extra savings during migration. The possibility that wing shape is influenced by foraging as well as migratory flight is discussed. We conclude that flight efficiency may be improved through different morphological adaptations in birds with different flight mechanisms.  相似文献   

15.
The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats’ wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.  相似文献   

16.
Allometric relationships describe the proportional covariation between morphological, physiological, or life‐history traits and the size of the organisms. Evolutionary allometries estimated among species are expected to result from species differences in ontogenetic allometry, but it remains uncertain whether ontogenetic allometric parameters and particularly the ontogenetic slope can evolve. In bovids, the nonlinear evolutionary allometry between horn length and body mass in males suggests systematic changes in ontogenetic allometry with increasing species body mass. To test this hypothesis, we estimated ontogenetic allometry between horn length and body mass in males and females of 19 bovid species ranging from ca. 5 to 700 kg. Ontogenetic allometry changed systematically with species body mass from steep ontogenetic allometries over a short period of horn growth in small species to shallow allometry with the growth period of horns matching the period of body mass increase in the largest species. Intermediate species displayed steep allometry over long period of horn growth. Females tended to display shallower ontogenetic allometry with longer horn growth compared to males, but these differences were weak and highly variable. These findings show that ontogenetic allometric slope evolved across species possibly as a response to size‐related changes in the selection pressures acting on horn length and body mass.  相似文献   

17.
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.  相似文献   

18.
Wing morphology is known to strongly affect flight performance by affecting lift and drag during flight. Performance may consequently deteriorate during feather moult due to the creation of feather gaps in the wing. Since wing gap size may directly affect the extent of reduced flight capacity, rapid moult involving the creation of large feather gaps is expected to substantially impair flight compared with the small gaps induced by a slower moult. To examine the factors affecting wing-feather moult speed, we studied adults of nineteen resident or very short-distance migrant passerine species during their post-breeding moult using a model-selection framework following a phylogenetically controlled analysis. We examined the speed of wing-feather moult in relation to each species’ flight distance index that was estimated based on local foraging movements rather than on longer flights (e.g., migration), assessed by the Delphi technique of expert evaluation. Moult speed was also examined with respect to six morphometric variables: body mass, wing loading, the feather comprising the tip of the wing, aspect ratio, wing span, and wing area. Our results suggest that flight distance index is the most important factor determining the speed of wing-feather moult in songbirds. Species that regularly fly a shorter distance were found to moult quickly, and those that take relatively longer flights moult slowly. These results suggest that the aerodynamic cost of wing area reduction due to feather moult shapes the evolution of annual routine processes by dictating a slower moult speed (resulting in small wing gaps) for species that regularly fly long distances and consequently may be affected more substantially by large wing gaps compared with short distance flyers.  相似文献   

19.
Behaviour has direct links to wing morphology in bird species. Many studies have postulated migration to be one of the most important forces of selection acting on wing morphology, particularly in relation to wing pointedness. Studies in passerines have found that adults have longer and more pointed wings than juveniles, especially in migratory species. We analysed differences in wing morphology between age groups of the European Turtle Dove, a non‐passerine migratory species that benefits from rounded wings during their daily activity, due to its ground‐feeding behaviour and acrobatic flight style. Our results show that adults of this species have longer but more rounded wings than juveniles. This suggests that in this species wing morphology in juveniles is selected to facilitate the first migration, whereas other selection forces (e.g. flight manoeuvrability) are more important after the first moult. These data also explain why juveniles are not as adept at escaping from predators or hunters as adults.  相似文献   

20.
The proximate and ultimate mechanisms underlying scaling relationships as well as their evolutionary consequences remain an enigmatic issue in evolutionary biology. Here, I investigate the evolution of wing allometries in the Schizophora, a group of higher Diptera that radiated about 65 million years ago, by studying static allometries in five species using multivariate approaches. Despite the vast ecological diversity observed in contemporary members of the Schizophora and independent evolutionary histories throughout most of the Cenozoic, size‐related changes represent a major contributor to overall variation in wing shape, both within and among species. Static allometries differ between species and sexes, yet multivariate allometries are correlated across species, suggesting a shared developmental programme underlying size‐dependent phenotypic plasticity. Static allometries within species also correlate with evolutionary divergence across 33 different families (belonging to 11 of 13 superfamilies) of the Schizophora. This again points towards a general developmental, genetic or evolutionary mechanism that canalizes or maintains the covariation between shape and size in spite of rapid ecological and morphological diversification during the Cenozoic. I discuss the putative roles of developmental constraints and natural selection in the evolution of wing allometry in the Schizophora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号