首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
BACKGROUND: Disease relapse is the leading cause of mortality for children diagnosed with disseminated neuroblastoma. The adoptive transfer of tumor-specific T cells is an attractive approach to target minimal residual disease following conventional therapies. We describe here the genetic engineering of human cytotoxic T lymphocytes (CTL) to express a chimeric immunoreceptor for re-directed HLA-independent recognition of neuroblastoma. METHODS: The CE7R chimeric immunoreceptor was constructed by PCR splice overlap extension and is composed of a single-chain antibody extracellular domain (scFv) derived from the L1-CAM-specific murine CE7 hybridoma fused to human IgG1 hinge-Fc, the transmembrane portion of human CD4, and the cytoplasmic tail of huCD3-zeta chain (scFvFc:zeta). Primary human T cells were genetically modified by naked DNA electrotransfer of plasmid expression vector CE7R-pMG then analyzed by Western blotting, flow cytometry for CE7R expression and cell surface trafficking, 4-h chromium release assay for re-directed neuroblastoma lysis, and ELISA for tumor-specific activation of cytokine production. RESULTS: CE7R is expressed as an intact chimeric protein that trafficks to the cell surface as a type I transmembrane protein. Primary human CE7R-expressing CD8(+) CTL clones specifically recognize human neuroblastoma tumor cells and are activated for tumor cell lysis and T(c)1 cytokine production. CONCLUSIONS: These data demonstrate the utility of CE7R for re-directing the effector function of CTL to neuroblastoma and have provided the rationale to initiate a FDA-authorized (BB-IND#9149) pilot clinical trial to establish the feasibility and safety of adoptive transfer of autologous CE7R(+)CD8(+) CTL clones to children with recurrent/refractory neuroblastoma.  相似文献   

2.
DNA delivery of tumor antigens can activate specific immune attack on cancer cells. However, antigens may be weak, and immune capacity can be compromised. Fusion of genes encoding activating sequences to the tumor antigen sequence facilitates promotion and manipulation of effector pathways. Idiotypic determinants of B-cell tumors, encoded by the variable region genes, are clone-specific tumor antigens. When assembled as single-chain Fv (scFv) alone in a DNA vaccine, immunogenicity is low. Previously, we found that fusion of a sequence from tetanus toxin (fragment C; FrC) promoted anti-idiotypic protection against lymphoma and myeloma. We have now investigated an alternative fusion gene derived from a plant virus, potato virus X coat protein, a primary antigen in humans. When fused to scFv, the self-aggregating protein generates protection against lymphoma and myeloma. In contrast to scFv-FrC, protection against lymphoma is mediated by CD4+ T cells, as is protection against myeloma. Plant viral proteins offer new opportunities to activate immunity against linked T-cell epitopes to attack cancer.  相似文献   

3.
There is growing interest in the development of novel single-chain bispecific antibodies for retargeting of immune effector T cells to tumor cells. Until today, functional fusion constructs consisting of a single-chain bispecific antibody and a fluorescent protein were not reported. Such molecules could be useful for an in vivo visualization of this retargeting process. Recently, we established two novel single-chain bispecific antibodies. One is capable of retargeting T cells to CD33, and the other is capable of retargeting T cells to the prostate stem cell antigen (PSCA). CD33 is an attractive immunotarget on the surface of tumor cells from patients with acute myeloid leukemia (AML). The PSCA is a potential target on prostate cancer cells. Flanking the reading frame encoding the green fluorescent protein (GFP) with a recently described novel helical linker element allowed us to establish novel single-chain bispecific fusion antibodies. These fluorescent fusion antibodies were useful to efficiently retarget T cells to the respective tumor cells and visualize the formation of immune synapses between effector and target cells.  相似文献   

4.
Rat C regions mu, gamma 1, gamma 2a, gamma 2b, gamma 2c, epsilon, and alpha have been characterized by means of chimeric antibody technology. A set of rat/mouse Ag-specific (anti-4-hydroxy-3-nitrophenacetyl) antibodies was constructed that differ only in the H chain constant region but carry identical V region and L chain, both of which are of mouse origin. All rat constant regions could be expressed and m.w. were as expected from the protein sequence. A slight variation in mobility within the IgG subclasses allowed us to establish a hierarchy for the sizes of the four gamma H chains; gamma 2b greater than gamma 1 greater than gamma 2c greater than gamma 2a. Rat IgG2c and IgG2b could be purified on both protein A and protein G while rat IgG2a could only be purified on protein G. Rat IgM and IgG2b were the most potent in C-mediated hemolysis. This was not simply a consequence of the amount of C1q bound because IgG2c bound C1q efficiently but was relatively poor in cell lysis. In ADCC using human effector and target cells, IgG2b and IgG1 were the most effective.  相似文献   

5.
A genetically engineered human IgG mutant with enhanced cytolytic activity.   总被引:2,自引:0,他引:2  
A mutant chimeric anti-5-dimethylaminonaphthalene-1-sulfonyl human Ig gamma that exhibited augmented effector function was constructed. Utilizing directed mutagenesis, a serine residue near the carboxyl terminus of the human IgG1 H chain (Ser444) was replaced by a cysteine. Novel intermolecular disulfide bonds between Cys444 residues linked pairs of Ig "tail-to-tail" to form covalent dimers ((H2L2)2). These dimers were 200-fold more efficient, compared with monomeric human IgG1, at antibody-dependent complement-mediated cytolysis of hapten-bearing erythrocytes. The ability to enhance the cytolytic activity of an mAb by genetic engineering may be of value in immunotherapy.  相似文献   

6.
Unconjugated mAbs have emerged as useful cancer therapeutics. Ab-dependent cellular cytotoxicity (ADCC) is believed to be a major antitumor mechanism of some anticancer Abs. However, the factors that regulate the magnitude of ADCC are incompletely understood. In this study, we described the relationship between Ab affinity and ADCC. A series of human IgG1 isotype Abs was created from the anti-HER2/neu (also named c-erbB2) C6.5 single-chain Fv (scFv) and its affinity mutants. The scFv affinities range from 10(-7) to 10(-11) M, and the IgG Abs retain the affinities of the scFv from which they were derived. The apparent affinity of the Abs ranged from nearly 10(-10) M (the lowest affinity variant) to almost 10(-11) M (the other variants). The IgG molecules were tested for their ability to elicit ADCC in vitro against three tumor cell lines with differing levels of HER2/neu expression using unactivated human PBMC from healthy donors as the effector cells. The results demonstrated that both the apparent affinity and intrinsic affinity of the Abs studied regulate ADCC. High-affinity tumor Ag binding by the IgGs led to the most efficient and powerful ADCC. Tumor cells expressing high levels of HER2/neu are more susceptible to the ADCC triggered by Abs than the cells expressing lower amounts of HER2/neu. These findings justify the examination of high affinity Abs for ADCC promotion. Because high affinity may impair in vivo tumor targeting, a careful examination of Ab structure to function relationships is required to develop optimized therapeutic unconjugated Abs.  相似文献   

7.
Targeting transferrin receptor 1 (TfR1) with monoclonal antibodies is a promising therapeutic strategy in cancer as tumor cells often overexpress TfR1 and show increased iron needs. We have re-engineered six anti-human TfR1 single-chain variable fragment (scFv) antibodies into fully human scFv2-Fcγ1 and IgG1 antibodies. We selected the more promising candidate (H7), based on its ability to inhibit TfR1-mediated iron-loaded transferrin internalization in Raji cells (B-cell lymphoma). The H7 antibody displayed nanomolar affinity for its target in both formats (scFv2-Fcγ1 and IgG1), but cross-reacted with mouse TfR1 only in the scFv2-Fc format. H7 reduced the intracellular labile iron pool and, contrary to what has been observed with previously described anti-TfR1 antibodies, upregulated TfR1 level in Raji cells. H7 scFv2-Fc format elimination half-life was similar in FcRn knock-out and wild type mice, suggesting that TfR1 recycling contributes to prevent H7 elimination in vivo. In vitro, H7 inhibited the growth of erythroleukemia and B-cell lymphoma cell lines (IC50 0.1 µg/mL) and induced their apoptosis. Moreover, the Im9 B-cell lymphoma cell line, which is resistant to apoptosis induced by rituximab (anti-CD20 antibody), was sensitive to H7. In vivo, tumor regression was observed in nude mice bearing ERY-1 erythroleukemia cell xenografts treated with H7 through a mechanism that involved iron deprivation and antibody-dependent cytotoxic effector functions. Therefore, targeting TfR1 using the fully human anti-TfR1 H7 is a promising tool for the treatment of leukemia and lymphoma.  相似文献   

8.
A bifunctional molecule was genetically engineered which contained an amino-terminal effector domain that bound immunoglobulin Fc (fragment B of staphylococcal protein A) and a carboxyl-terminal domain that bound digoxin [a single-chain Fv (sFv)]. Effector and sFv binding properties were virtually identical with those of the parent molecules, despite the proximity of the FB to the sFv combining site. This finding is unprecedented since in all molecules of the natural immunoglobulin superfamily, the antigen binding domain is amino terminal to the effector domain. The FB-sFv sequence was encoded in a single synthetic gene and expressed as a 33,106 molecular weight protein in Escherichia coli. After purification, renaturation, and affinity isolation, yield of active fusion protein were 110 mg/L of fermented cells (18.5-g cell paste). Bifunctionality was confirmed by the ability of FB-sFv to cross-link IgG to digoxin-bovine serum albumin, as measured by plate assays and by Ouchterlony analysis. Analysis of the expressed fusion protein suggests that the sFv holds promise for the development of multifunctional, targetable single-chain proteins.  相似文献   

9.
TNF application in humans is limited by severe side effects, including life-threatening symptoms of shock. Therefore, TNF can be successfully applied as a tumor therapeutic reagent only under conditions that prevent its systemic action. To overcome this limitation, genetic fusion of TNF to tumor-selective Abs is a favored strategy to increase site-specific cytokine targeting. Because wild-type TNF displays its bioactivity as noncovalently linked homotrimer, the challenge is to define structural requirements for a TNF-based immunokine format with optimized structure-activity profile. We compared toxicity and efficacy of a dimerized CH2/CH3 truncated IgG1-TNF fusion protein and a single-chain variable fragment-coupled TNF monomer recognizing fibroblast-activating protein. The former construct preserves its dimeric structure stabilized by the natural disulfide bond IgG1 hinge region, while the latter trimerizes under native conditions. Analysis of complex formation of wild-type TNF and of both fusion proteins with TNFR type 1 (TNF-R1) using surface plasmon resonance correlated well with in vitro and in vivo toxicity data. There is strong evidence that TNF subunits in a trimeric state display similar toxicity profiles despite genetic fusion to single-chain variable fragment domains. However, LD(50) of either immunodeficient BALB/c nu/nu or immunocompetent BALB/c mice was significantly decreased following administration of TNF in the formation of IgG1-derived dimeric fusion protein. Reduction of unspecific peripheral complexation of TNF-R1 resulted in higher anticancer potency by immunotargeting of fibroblast-activating protein-expressing xenografts. The broader therapeutic window of the IgG1-derived TNF fusion protein favors the dimeric TNF-immunokine format for systemic TNF-based tumor immunotherapy.  相似文献   

10.
Immunotoxins containing recombinant human-derived single-chain fragment variable (scFv) reagents (83 and 40) against CTLA-4 (CD152) linked to saporin, a ribosome-inactivating protein, were prepared and tested on CD3/CD28-activated T lymphocytes, MLRs, CTLA-4-positive cell lines, and hemopoietic precursors. Immunotoxins induced apoptosis in activated T lymphocytes and were able to specifically inhibit MLR between T lymphocytes and dendritic cells. The 83-saporin immunotoxin also inhibited the T cell activation in an MLR between T lymphocytes and an EBV-positive lymphoblastoid B cell line. Toxicity tests on hemopoietic precursors showed little or no effects in inhibiting colonies' growth. As the 83 scFv Ab was reactive also with activated mouse T lymphocytes, 83-saporin was tested in a model of tumor rejection consisting of C57BL/6 mice bearing a murine H.end endothelioma cell line, derived from DBA/2 mice. The lymphoid infiltration due to the presence of the tumor was reduced to a high extent, demonstrating that the immunotoxin was actually available and active in vivo. Thus, taking the results altogether, this study might represent a new breakthrough for immunotherapy, showing the possibility of targeting CTLA-4 to kill activated T cells, using conjugates containing scFv Abs and type 1 ribosome-inactivating protein.  相似文献   

11.
The porcine CD3 specific monoclonal antibody 898H2-6-15 has been used in allo- and xeno-transplantation studies as a porcine CD3 marker and as an effective T cell depletion reagent when conjugated to the diphtheria toxin mutant, CRM9. A recombinant anti-porcine CD3 immuntoxin was recently developed using single-chain variable fragments (scFv) derived from 898H2-6-15. In this study, using published sequence data, we have expressed the porcine CD3 ectodomain molecules in E. coli through inclusion body isolation and in vitro refolding approach. The expressed and refolded porcine CD3 ectodomain molecules include CD3ε, CD3γ, CD3δ, CD3εγ heterodimer, CD3εδ heterodimer, CD3εγ single-chain fusion protein and CD3εδ single-chain fusion protein. These refolded porcine CD3 ectodomain molecules were purified with a strong anion exchange resin Poros 50HQ. ELISA analysis demonstrated that only the porcine CD3εγ ectodomain single-chain fusion protein can bind to the porcine CD3 specific monoclonal antibody 898H2-6-15. The availability of this porcine CD3εγ ectodomain single-chain fusion protein will allow screening for affinity matured variants of scFv derived from 898H2-6-15 to improve the recombinant anti-porcine CD3 immunotoxin. Porcine CD3εγ ectodomain single-chain fusion protein will also be a very useful reagent to study the soluble phase interaction between porcine CD3εγ and porcine CD3 antibodies such as 898H2-6-15.  相似文献   

12.
The horseshoe crab clotting factor, factor C, present in the hemocytes is a serine-protease zymogen activated with lipopolysaccharide. It is a two-chain glycoprotein (Mr = 123,000) composed of a heavy chain (Mr = 80,000) and a light chain (Mr = 43,000) [T. Nakamura et al. (1986) Eur. J. Biochem. 154, 511-521]. In our continued study of this zymogen, we have now also found a single-chain form of factor C (Mr = 123,000) in the hemocyte lysate. The heavy chain had the NH2-terminal sequence of Ser-Gly-Val-Asp-, consistent with that of the single-chain factor C, indicating that the heavy chain is derived from the NH2-terminal part of the molecule. The light chain had an NH2-terminal sequence of Ser-Ser-Gln-Pro-. Incubation of the two-chain zymogen with lipopolysaccharide resulted in the cleavage of a Phe-Ile bond between residues 72 and 73 of the light chain. Concomitant with this cleavage, the A (72 amino acid residues) and B chains derived from the light chain were formed. The complete amino acid sequence of the A chain was determined by automated Edman degradation. The A chain contained a typical segment which is similar in sequence to a family of repeats in human beta 2-glycoprotein I, complement factors B, protein H, C4b-binding protein, and coagulation factor XIII b subunit. The NH2-terminal sequence of the B chain was Ile-Trp-Asn-Gly-. This chain contained the serine-active site sequence-Asp-Ala-Cys-Ser-Gly-Asp-Ser-Gly-Gly-Pro-. These results indicate that horseshoe crab factor C exists in the hemocytes in a single-chain zymogen form and is converted to an active serine protease by hydrolysis of a specific Phe-Ile peptide bond.  相似文献   

13.
Soluble forms of human MHC class I HLA-A2 were produced in which the peptide binding groove was uniformly occupied by a single tumor or viral-derived peptides attached via a covalent flexible peptide linker to the N terminus of a single-chain -2-microglobulin-HLA-A2 heavy chain fusion protein. A tetravalent version of this molecule with various peptides was found to be functional. It could stimulate T cells specifically as well as bind them with high avidity. The covalently linked single chain peptide-HLA-A2 construct was next fused at its C-terminal end to a scFv antibody fragment derived from the variable domains of an anti-IL-2R subunit-specific humanized antibody, anti-Tac. The scFv–MHC fusion was thus encoded by a single gene and produced in E. coli as a single polypeptide chain. Binding studies revealed its ability to decorate Ag-positive human tumor cells with covalent peptide single-chain HLA-A2 (scHLA-A2) molecules in a manner that was entirely dependent upon the specificity of the targeting Antibody fragment. Most importantly, the covalent scHLA-A2 molecule, when bound to the target tumor cells, could induce efficient and specific HLA-A2-restricted, peptide-specific CTL-mediated lysis. These results demonstrate the ability to generate soluble, stable, and functional single-chain HLA-A2 molecules with covalently linked peptides, which when fused to targeting antibodies, potentiate CTL killing. This new approach may open the way for the development of new immunotherapeutic strategies based on antibody targeting of natural cognate MHC ligands and CTL-based cytotoxic mechanisms.Kfir Oved and Avital Lev contributed equally to this work  相似文献   

14.
We have generated a chimeric protein molecule composed of the alpha- and beta-chains of the MHC class II I-E molecule fused to antibody V regions derived from anti-human CD4 mAb MT310. Expression vectors were constructed containing the functional, rearranged gene segments coding for the V region domains of the antibody H and L chains in place of the first domains of the complete structural genes of the I-E alpha- and beta-chains, respectively. Cells transfected with both hybrid genes expressed a stable protein product on the cell surface. The chimeric molecule exhibited the idiotype of the antibody MT310 as shown by binding to the anti-idiotypic mAb 20-46. A protein of the anticipated molecular mass was immunoprecipitated with anti-mouse IgG antiserum. Furthermore, human soluble CD4 did bind to the transfected cell line, demonstrating that the chimeric protein possessed the binding capacity of the original mAb. Thus, the hybrid molecule retained: 1) the properties of a MHC class II protein with regard to correct chain assembly and transport to the cell surface; as well as 2) the Ag binding capacity of the antibody genes used. The generation of hybrid MHC class II molecules with highly specific, non-MHC-restricted binding capacities will be useful for studying MHC class II-mediated effector functions such as selection of the T cell repertoire in thymus of transgenic mice.  相似文献   

15.
Human IgG2 antibodies display disulfide-mediated structural isoforms   总被引:1,自引:0,他引:1  
In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (C(L)) and the heavy chain C(H)1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (C(H)1-C(L)-hinge)(2) complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either kappa or lambda light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.  相似文献   

16.
The therapeutic efficacy of recombinant antibodies such as single-chain Fv fragments and small bispecific or bifunctional molecules is often limited by rapid elimination from the circulation because of their small size. Here, we have investigated the effects of N-glycosylation on the activity and pharmacokinetics of a small bispecific single-chain diabody (scDb CEACD3) developed for the retargeting of cytotoxic T cells to CEA-expressing tumor cells. We could show that the introduction of N-glycosylation sequons into the flanking linker and a C-terminal extension results in the production of N-glycosylated molecules after expression in transfected HEK293 cells. N-Glycosylated scDb variants possessing 3, 6, or 9 N-glycosylation sites, respectively, retained antigen binding activity and bispecificity for target and effector cells as shown in a target cell-dependent IL-2 release assay, although activity was reduced approximately 3-5-fold compared with the unmodified scDb. All N-glycosylated scDb variants exhibited a prolonged circulation time compared with scDb, leading to a 2-3-fold increase of the area under curve (AUC). In comparison, conjugation of a branched 40-kDa PEG chain increased AUC by a factor of 10.6, while a chimeric anti-CEA IgG1 molecule had the longest circulation time with a 17-fold increase in AUC. Thus, N-glycosylation complements the repertoire of strategies to modulate pharmacokinetics of small recombinant antibody molecules by an approach that moderately prolongs circulation time.  相似文献   

17.
Abs have a paramount place in the treatment of certain, mainly lymphoid, malignancies, although tumors of nonhemopoietic origin have proved more refractory ones. We have previously shown that the efficacy of immunotherapy of solid tumors, in particular ovarian carcinoma, may be improved by the use of IgE Abs in place of the conventional IgG. An IgE Ab (MOv18 IgE) against an ovarian-tumor-specific Ag (folate binding protein), in combination with human PBMC, introduced into ovarian cancer xenograft-bearing mice, greatly exceeded the analogous IgG1 in promoting survival. In this study, we analyzed the mechanisms by which MOv18 IgE may exert its antitumor activities. Monocytes were essential IgE receptor-expressing effector cells that mediated the enhanced survival of tumor-bearing mice by MOv18 IgE and human PBMC. Monocytes mediated MOv18 IgE-dependent ovarian tumor cell killing in vitro by two distinct pathways, cytotoxicity and phagocytosis, acting respectively through the IgE receptors FcepsilonRI and CD23. We also show that human eosinophils were potent effector cells in MOv18 IgE Ab-dependent ovarian tumor cell cytotoxicity in vitro. These results demonstrate that IgE Abs can engage cell surface IgE receptors and activate effector cells against ovarian tumor cells. Our findings offer a framework for an improved immunotherapeutic strategy for combating solid tumors.  相似文献   

18.
An expression vector (pIL-2/IgG1) was constructed with the coding sequence of human IL-2 inserted upstream of the four exons (CH1, hinge, CH2, and CH3) that encode the human IgG1 H chain constant region. Introduction of this vector into a nonsecreting murine myeloma cell line resulted in the production of a chimeric molecule (IL-2/IgG1) consisting of IL-2 attached to the three Ig constant region domains. This molecule was secreted by the transfectant as a homodimer. Functional characterization revealed that the IL-2/IgG1 chimeric molecule exhibited the binding and proliferation-mediating activities of IL-2. On a per molecule basis, IL-2/IgG1 was indistinguishable from human rIL-2 in the ability to induce the proliferation of an IL-2-dependent T cell line. This chimeric molecule also possesses Ig effector function, in that it can mediate the specific lysis of IL-2R-positive cells in the presence of complement. These results demonstrate that it is possible to maintain Ig effector function in molecules ("immunoligands") in which the binding specificity is conferred not by Ig variable regions, but rather, by a ligand of choice.  相似文献   

19.
Monoclonal antibodies are widely used in the treatment of many B cell lymphomas and certain solid tumors. All currently approved therapeutic monoclonal antibodies are of the immunoglobulin G (IgG) isotype. We hypothesized that tumor-specific monoclonal antibodies of the IgE isotype may serve as effective cancer therapeutics. To test this hypothesis, we produced mouse?Chuman chimeric IgE antibodies specific for the human B cell antigen CD20 and the epithelial antigen MUC1. We demonstrate here that anti-hCD20 IgE antibodies have in vitro cytotoxic activity when used with purified allergic effector cells derived from umbilical cord blood. At an effector-tumor ratio of 2:1, mast cells and tumor-specific IgE induced a 2.5-fold increase in tumor cell death, as compared to control IgE. Similar results were observed when eosinophils were used as effector cells. In an in vivo murine model of breast carcinoma, administration of anti-hMUC1 IgE reduced the growth of MUC1+ tumors by 25?C30?% in hFc??RI transgenic mice. In contrast, local production of IgE and cytokines chemotactic for macrophages, eosinophils and mast cells led to complete tumor eradication. These results suggest that allergic effector cells activated by IgE and cell surface antigens have the capacity to induce tumor cell death in vitro and in vivo. The use of chimeric antibodies and hFc??RI transgenic mice will greatly enhance investigations in the nascent field of allergo-oncology.  相似文献   

20.
Bispecific antibodies (BsAbs) represent an emerging class of biologics that achieve dual targeting with a single agent. Recombinant DNA technologies have facilitated a variety of creative bispecific designs with many promising therapeutic applications; however, practical methods for producing high quality BsAbs that have good product stability, long serum half-life, straightforward purification, and scalable production have largely been limiting. Here we describe a protein-engineering approach for producing stable, scalable tetravalent IgG-like BsAbs. The stability-engineered IgG-like BsAb was envisioned to target and crosslink two TNF family member receptors, TRAIL-R2 (TNF-Related Apoptosis Inducing Ligand Receptor-2) and LTβR (Lymphotoxin-beta Receptor), expressed on the surface of epithelial tumor cells with the goal of triggering an enhanced anti-tumor effect. Our IgG-like BsAbs consists of a stability-engineered anti-LTβR single chain Fv (scFv) genetically fused to either the N- or C-terminus of the heavy chain of a full-length anti-TRAIL-R2 IgG1 monoclonal antibody. Both N- or C-terminal BsAbs were active in inhibiting tumor cell growth in vitro, and with some cell lines demonstrated enhanced activity relative to the combination of parental Abs. Pharmacokinetic studies in mice revealed long serum half-lives for the BsAbs. In murine tumor xenograft models, therapeutic treatment with the BsAbs resulted in reduction in tumor volume either comparable to or greater than the combination of parental antibodies, indicating that simultaneously targeting and cross-linking receptor pairs is an effective strategy for treating tumor cells. These studies support that stability-engineering is an enabling step for producing scalable IgG-like BsAbs with properties desirable for biopharmaceutical development.Key words: bispecific antibodies, single-chain Fv, immunoglobulins, antibody therapeutics, protein stability, pharmacokinetics, protein engineering, tumor inhibition, cancer treatment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号