首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male Sprague-Dawley rats were maintained on a low-salt (LS) diet (0.4% NaCl) or a high-salt (HS) diet (4% NaCl) for 3 days or 4 wk. PO(2) reduction to 40-45 mmHg, the stable prostacyclin analog iloprost (10 pg/ml), and stimulatory G protein activation with cholera toxin (1 ng/ml) caused vascular smooth muscle (VSM) hyperpolarization, increased cAMP production, and dilation in cerebral arteries from rats on a LS diet. Arteries from rats on a HS diet exhibited VSM depolarization and constriction in response to hypoxia and iloprost, failed to dilate or hyperpolarize in response to cholera toxin, and cAMP production did not increase in response to hypoxia, iloprost, or cholera toxin. Low-dose angiotensin II infusion (5 ng x kg(-1) x min(-1) i.v.) restored normal responses to reduced PO(2) and iloprost in arteries from animals on a HS diet. These observations suggest that angiotensin II suppression with a HS diet leads to impaired relaxation of cerebral arteries in response to vasodilator stimuli acting at the cell membrane.  相似文献   

2.
Insulin resistance (IR) impairs vascular responses in peripheral arteries. However, the effects of IR on cerebrovascular control mechanisms are completely unexplored. We examined the vascular function of isolated middle cerebral arteries (MCAs) from fructose-fed IR and control rats. Endothelium-dependent vasodilation elicited by bradykinin (BK) was reduced in IR compared with control MCAs. Maximal dilation to BK (10(-6) M) was 38 +/- 3% (n = 13) in control and 19 +/- 3% (n = 10) in IR arteries (P < 0.01). N(omega)-nitro-L-arginine methyl ester (L-NAME; 10 microM) decreased responses to BK in control arteries by approximately 65% and inhibited the already reduced responses completely in IR MCAs. Indomethacin (10 microM) reduced relaxation to BK in control MCAs by approximately 40% but was largely ineffective in IR arteries. Combined L-NAME and indomethacin treatments eliminated the BK-induced dilation in both groups. Similarly to BK, endothelium-mediated and mainly cyclooxygenase (COX)-dependent dilation to calcium ionophore A23187 was reduced in IR arteries compared with controls. In contrast, vascular relaxation to sodium nitroprusside was similar between the IR and control groups. These findings demonstrate that endothelium-dependent dilation in cerebral arteries is impaired in IR primarily because of a defect of the COX-mediated pathways. In contrast, nitric oxide-mediated dilation remains intact in IR arteries.  相似文献   

3.
To evaluate the potential role of impaired renin-angiotensin system (RAS) function in contributing to reduced vascular relaxation in Dahl salt-sensitive (S) rats, responses to ACh (10(-6) mol/l) and hypoxia (Po(2) reduction to 40-45 mmHg) were determined in isolated middle cerebral arteries of Dahl S rats, Brown Norway (BN) rats, and consomic rats having chromosome 13 (containing the renin gene) or chromosome 16 of the BN rat substituted into the Dahl S genetic background (SS-13(BN) and SS-16(BN), respectively). Arteries of BN rats on a low-salt (LS) diet (0.4% NaCl) dilated in response to ACh and hypoxia, whereas dilation in response to these stimuli was absent in Dahl S rats on LS diet. Vasodilation to ACh and hypoxia was restored in SS-13(BN) rats on an LS diet but not in SS-16(BN) rats. High-salt diet (4% NaCl), to suppress ANG II, eliminated vasodilation to hypoxia and ACh in BN and in SS-13(BN) rats. Treatment of SS-13(BN) rats with the AT(1) receptor antagonist losartan also eliminated the restored vasodilation in response to ACh and hypoxia. These studies suggest that restoration of normal RAS regulation in SS-13(BN) consomic rats restores vascular relaxation mechanisms that are impaired in Dahl S rats.  相似文献   

4.
Tissue blood flow and blood pressure are each regulated by the contractile behavior of resistance artery smooth muscle. Vascular diseases such as hypertension have also been attributed to changes in vascular smooth muscle function as a consequence of altered Ca2+ removal. In the present study of Ca2+ removal mechanisms, in dissociated single cells from resistance arteries using fura-2 microfluorimetry and voltage clamp, Ca2+ uptake by the sarcoplasmic reticulum and extrusion by the Ca2+ pump in the cell membrane were demonstrably important in regulating Ca2+. In contrast, the Na+-Ca2+ exchanger played no detectable role in clearing Ca2+. Thus a voltage pulse to 0 mV, from a holding potential of -70 mV, triggered a Ca2+ influx and increased intracellular Ca2+ concentration ([Ca2+]i). On repolarization, [Ca2+]i returned to the resting level. The decline in [Ca2+]i consisted of three phases. Ca2+ removal was fast immediately after repolarization (first phase), then plateaued (second phase), and finally accelerated just before [Ca2+]i returned to resting levels (third phase). Thapsigargin or ryanodine, which each inhibit Ca2+ uptake into stores, did not affect the first but significantly inhibited the third phase. On the other hand, Na+ replacement with choline+ did not affect either the phasic features of Ca2+ removal or the absolute rate of its decline. Ca2+ removal was voltage-independent; holding the membrane potential at 120 mV, rather than at -70 mV, after the voltage pulse to 0 mV, did not attenuate Ca2+ removal rate. These results suggest that Ca2+ pumps in the sarcoplasmic reticulum and the plasma membrane, but not the Na+-Ca2+ exchanger, are important in Ca2+ removal in cerebral resistance artery cells.  相似文献   

5.
Inhibition of endothelium-dependent vascular relaxation by tetrandrine.   总被引:6,自引:0,他引:6  
C Y Kwan  F M Ma  S C Hui 《Life sciences》1999,64(25):2391-2400
The effects of tetrandrine, a Ca2+ antagonist of bis-benzylisoquinoline alkaloid origin, on endothelium-dependent and -independent vascular responsiveness were investigated in perfused rat mesenteric artery. In endothelium-intact preparations pre-contracted with 3 microM phenylephrine and fully relaxed by 0.3 microM acetylcholine tetrandrine caused a rapid transient contraction. In endothelium-denuded preparations, tetrandrine caused only vasorelaxation of phenylephrine-contraction. The biphasic effect of tetrandrine in acetylcholine-relaxed preparations could also be mimicked by sequential applications of atropine/tetrandrine or N(G)-nitro-L-arginine-methylester (L-NAME)/tetrandrine, but atropine or L-NAME alone caused only vasoconstriction. This tetrandrine-induced transient vasoconstriction was also observed in preparations relaxed with ATP, histamine or thapsigargin (TSG), but not those relaxed with A23187, sodium nitroprusside or nifedipine. The present results suggest that tetrandrine, in addition to its known inhibitory effects on vascular smooth muscle by virtue of its Ca2+ antagonistic actions, also inhibits NO production by the endothelial cells possibly by blockade of Ca2+ release-activated Ca2+ channels.  相似文献   

6.

Uridine 5′-triphosphate (UTP) has an important role as an extracellular signaling molecule that regulates inflammation, angiogenesis, and vascular tone. While chronic hypertension has been shown to promote alterations in arterial vascular tone regulation, carotid artery responses to UTP under hypertensive conditions have remained unclear. The present study investigated carotid artery responses to UTP in spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats (WKY). Accordingly, our results found that although UTP promotes concentration-dependent relaxation in isolated carotid artery segments from both SHR and WKY after pretreatment with phenylephrine, SHR exhibited significantly lower arterial relaxation responses compared with WKY. Moreover, UTP-induced relaxation was substantially reduced by endothelial denudation and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine in both SHR and WKY. The difference in UTP-induced relaxation between both groups was abolished by the selective P2Y2 receptor antagonist AR-C118925XX and the cyclooxygenase (COX) inhibitor indomethacin but not by the thromboxane-prostanoid receptor antagonist SQ29548. Furthermore, we detected the release of PGE2, PGF, and PGI2 in the carotid arteries of SHR and WKY, both at baseline and in response to UTP. UTP administration also increased TXA2 levels in WKY but not SHR. Overall, our results suggest that UTP-induced relaxation in carotid arteries is impaired in SHR perhaps due to impaired P2Y2 receptor signaling, reductions in endothelial NO, and increases in the levels of COX-derived vasoconstrictor prostanoids.

  相似文献   

7.
We have previously shown that estrogen treatment increases cerebrovascular cyclooxygenase-1, prostacyclin synthase, and production of prostacyclin. Therefore, vascular tone and prostanoid production were measured to investigate functional consequences of estrogen exposure. Middle cerebral arteries were isolated from ovariectomized female Fischer-344 rats with or without chronic in vivo 17beta-estradiol treatment. In vivo 17beta-estradiol treatment increased cerebral artery diameter; functional endothelium was required for expression of these differences. The nonspecific cyclooxygenase inhibitor indomethacin constricted, whereas arachidonic acid dilated, cerebral arteries from estrogen-treated animals. Estrogen exposure increased production of prostacyclin by cerebral arteries. Conversely, in estrogen-deficient animals, indomethacin dilated and arachidonic acid constricted cerebral blood vessels. This correlated with vasorelaxation following inhibition of the thromboxane-endoperoxide receptor with SQ-29548 but not after selective blockade of thromboxane synthase with furegrelate, suggesting prostaglandin endoperoxide (i.e., PGH2) activity. Removal of the endothelium or selective blockade of cyclooxygenase-1 with SC-560 abolished estrogen-mediated differences in the effects of arachidonate on vessel diameter and on prostacyclin production by cerebral arteries. These data suggest 17beta-estradiol decreases cerebrovascular tone by shifting the primary end product of the endothelial cyclooxygenase-1 pathway from the constrictor prostaglandin PGH2 to the vasodilator prostacyclin. These effects of estrogen may contribute to the heightened thromboresistance and enhanced cerebral blood flow documented in pre-versus postmenopausal women.  相似文献   

8.
9.
Pretreatment with capsaicin caused a depletion of substance P (SP)-, neurokinin A (NKA)- and calcitonin gene-related peptide (CGRP)-like immunoreactivity (-LI) from the trigeminal ganglion, dura mater and cerebral arteries. The effect of capsaicin on isolated basilar arteries of guinea pig resulted in a biphasic relaxant response of histamine precontracted vessels. The first phase of the capsaicin-induced relaxation was absent in capsaicin-treated guinea pigs. Furthermore, repeated administration of capsaicin decreased the first but not the second phase of relaxation, supporting the view that a stored agent was released, while the second phase probably was due to a direct effect of capsaicin per se. The biphasic effect was not modified by the SP antagonist Spantide in a concentration that blocks tachykinin response (3.10(-6) M), nor by removal of the endothelium. There was no significant difference in pD2 values (-log concentration eliciting half maximum relaxation) between relaxations induced by SP, NKA, neurokinin B, neuropeptide K or CGRP in capsaicin pretreated as compared to vehicle-treated animals. These results are in support of the assumption that CGRP is involved in the capsaicin-induced relaxation caused by release of vasoactive agents from sensory afferent nerves.  相似文献   

10.
The goal of this study was to determine how myogenic responses and vascular responses to reduced Po(2) interact to determine vascular smooth muscle (VSM) transmembrane potential and active tone in isolated middle cerebral arteries from Sprague-Dawley rats. Stepwise elevation of transmural pressure led to depolarization of the VSM cells and myogenic constriction, and reduction of the O(2) concentration of the perfusion and superfusion reservoirs from 21% O(2) to 0% O(2) caused vasodilation and VSM hyperpolarization. Myogenic constriction and VSM depolarization in response to transmural pressure elevation still occurred at reduced Po(2). Arterial dilation in response to reduced Po(2) was not impaired by pressure elevation but was significantly reduced at the lowest transmural pressure (60 mmHg). However, the magnitude of VSM hyperpolarization was unaffected by transmural pressure elevation. This study demonstrates that myogenic activation in response to transmural pressure elevation does not override hypoxic relaxation of middle cerebral arteries and that myogenic responses and hypoxic relaxation can independently regulate vessel diameter despite substantial changes in the other variable.  相似文献   

11.
We examined responses of pial arteries and veins in situ to noradrenergic stimuli in the presence of histamine. Electrical stimulation of sympathetic nerves and perivascular microapplication of norepinephrine in mock cerebrospinal fluid produced constriction of arteries and veins in anesthetized cats. During simultaneous perivascular injection of histamine, these noradrenergic responses were attenuated or reversed. In both arteries and veins, constriction from sympathetic nerve stimulation was prevented by simultaneous application of the histamine receptor agonists, pyridylethylamine (H1) or impromidine (H2), results that suggest interference involving both types of histamine receptors. In arteries, impromidine, but not pyridylethylamine, inhibited constriction resulting from exogenous norepinephrine. Our findings indicate that histamine may have an inhibitory influence, exerted through both receptor types, on noradrenergic mechanisms in cerebral vessels.  相似文献   

12.
Restoration of host defense mechanisms in man by levamisole   总被引:4,自引:0,他引:4  
Levamisole, a broad-spectrum anthelmintic, increased the delayed hypersensitivity skin reaction to tuberculin and to DNCB in about one third of the patients. Levamisole and the racemate tetramisole temporarily increased serum antibody titres in response to vaccination against influenza.  相似文献   

13.
目的探讨烫(烧)伤损伤时大鼠脑血管内皮素-1能神经纤维分布与脑血管神经源性调节的关系,以及烫(烧)伤对脑血管损伤的影响。方法应用免疫组织化学技术观察烫(烧)伤大鼠脑底动脉(包括大脑前动脉、大脑中动脉、大脑后动脉和基底动脉)内皮素-1能神经纤维的分布。结果烫(烧)伤大鼠和正常大鼠脑底动脉均可见棕褐色的内皮素-1能免疫反应阳性神经纤维,似细线状,攀附于血管壁上,烫(烧)伤大鼠脑底动脉各主要分支内皮素-1能免疫反应阳性纤维密度较正常大鼠明显增加,纤维走行大多呈网状。结论烫(烧)伤可引起大鼠脑底动脉内皮素-1能免疫反应阳性神经纤维增加,增加的内皮素-1能神经纤维可能诱发脑血管痉挛和脑血液循环紊乱。提示内皮素-1能神经纤维在烫(烧)伤后在脑血管的神经源性调节中可能起重要的作用。  相似文献   

14.
The density of catecholamine-containing nerve fibers was studied in the cerebral and mesenteric arteries from normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), and stroke-prone SHR (SHRSP) in the growing (SHR, WKY) and adult (SHR, SHRSP, WKY) animals. Cerebral arteries from SHR showed an increased adrenergic innervation from day 1. The nerve plexuses reached an adult pattern earlier in SHR than in WKY. The arteries from adult SHR and SHRSP (22 weeks old) showed a markedly higher nerve density than WKY. There was a positive linear correlation between blood pressure and nerve density for four cerebral arteries. The mesenteric arteries were not innervated at birth. However, hyperinnervation of these arteries in the SHR was already present at 10 days of age as compared with WKY. Sympathectomy with anti-nerve growth factor and guanethidine caused a complete disappearance of fluorescent fibers in the mesenteric arteries from SHR and WKY, and in the cerebral arteries of WKY. The same procedure caused only partial denervation of the cerebral arteries from hypertensive animals. We postulate that the increase in nerve density in the cerebral arteries from the hypertensive rats may contribute to the development of arterial hypertrophy in chronic hypertension through the trophic effect of the sympathetic innervation on vascular structure.  相似文献   

15.
The role of membrane depolarization in the histamine-induced contraction of the rabbit middle cerebral artery was examined by simultaneous measurements of membrane potential and isometric force. Histamine (1-100 microM) induced a concentration-dependent sustained contraction associated with sustained depolarization. Action potentials were observed during depolarization caused by histamine but not by high-K(+) solution. K(+)-induced contraction was much smaller than sustained contraction associated with the same depolarization caused by histamine. Nifedipine attenuates histamine-induced sustained contraction by 80%, with no effect on depolarization. Inhibition of nonselective cation channels with Co(2+) (100-200 microM) reversed the histamine-induced depolarization and relaxed the arteries but induced only a minor change in K(+)-induced contraction. In the presence of Co(2+) and in low-Na(+) solution, histamine-evoked depolarization and contraction were transient. We conclude that nonselective cation channels contribute to histamine-induced sustained depolarization, which stimulates Ca(2+) influx through voltage-dependent Ca(2+) channels participating in contraction. The histamine-induced depolarization, although an important and necessary mechanism, cannot fully account for sustained contraction, which may be due in part to augmentation of currents through voltage-dependent Ca(2+) channels and Ca(2+) sensitization of the contractile process.  相似文献   

16.
Magnesium causes a variety of vascular smooth muscle to relax. The present study was designed to determine whether there is a developmental change in the magnesium-induced response of pulmonary vasculature. Isolated pulmonary arteries (PA) of newborn (1- to 3-day-old) and juvenile (4- to 6-wk-old) rabbits were suspended in organ chambers filled with modified Krebs-Ringer bicarbonate solution (95% O(2)-5% CO(2), 37.0 degrees C), and their isometric tension was recorded. In arteries preconstricted with endothelin-1 to a similar tension level, MgSO(4) caused greater relaxation of juvenile rabbit PA than that of the newborn rabbit PA. Verapamil, a voltage-dependent Ca(2+) channel blocker, attenuated magnesium-induced relaxation in juvenile rabbit PA but not in newborn PA. The uptake of Ca(2+) of juvenile rabbit PA was inhibited by MgSO(4), and the inhibition was attenuated by verapamil. The uptake of Ca(2+) of newborn rabbit PA was smaller than that of the juvenile PA and was not significantly affected by MgSO(4) and verapamil. These results demonstrate that there is a developmental increase in the dilator effect of MgSO(4) in rabbit PA. In newborn rabbit PA, an incomplete maturation of the voltage-dependent Ca(2+) channels may contribute to the smaller vasodilation induced by MgSO(4).  相似文献   

17.
We examined whether insulin resistance alters the function of ATP-dependent and Ca(2+)-activated K(+) channels (K(ATP) and K(Ca) channels, respectively) in pressurized isolated middle cerebral arteries (MCAs) from fructose-fed insulin-resistant (IR) and control rats. Blockade of K(Ca) channels with tetraethylammonium chloride (TEA, 2.5 mM) or iberiotoxin (IBTX, 0.1 microM) increased the spontaneously developed tone in control MCAs by 10.5 +/- 1.3% (n = 10) and 13.3 +/- 2.3% (n = 6), respectively. In the IR arteries, TEA induced similar constrictions (8.0 +/- 1.1%, n = 10), but IBTX constricted the IR arteries by only 3.1 +/- 0.9% (n = 8; P < 0.01). Bradykinin (BK)-induced endothelium-mediated relaxation was reduced in IR MCAs. Maximum relaxation to BK (10(-6) M) was 42 +/- 4% in control (n = 9) and 19 +/- 2% in IR (n = 10; P < 0.01) arteries. Pretreatment with TEA, IBTX, or the K(ATP) channel blocker glibenclamide (10 microM) inhibited relaxation to BK in control MCAs but did not alter dilation in IR arteries. Relaxation to the K(ATP) channel opener cromakalim was also diminished in IR MCAs. Maximum relaxation to cromakalim (10(-5) M) was 48 +/- 3% in control (n = 6) and 19 +/- 2% in IR arteries (n = 6; P < 0.01). These findings demonstrate that insulin resistance alters the function of K(ATP) and K(Ca) channels in isolated MCAs and affects the control of resting vascular tone and the mediation of dilator stimuli.  相似文献   

18.
Structurally characterizing partially folded peptides is problematic given the nature of their transient conformational states. 13C-NMR relaxation data can provide information on the geometry of bond rotations, motional restrictions, and correlated bond rotations of the backbone and side chains and, therefore, is one approach that is useful to assess the presence of folded structure within a conformational ensemble. A peptide 12mer, R1GITVNG7KTYGR12, has been shown to partially fold in a relatively stable beta-hairpin conformation centered at NG. Here, five residues, G2, V5, G7, Y10, G11, were selectively 13C-enriched, and 13C-NMR relaxation experiments were performed to obtain auto- and cross-correlation motional order parameters, correlation times, bond rotation angular variances, and bond rotational correlation coefficients. Our results indicate that, of the three glycines, G7 within the hairpin beta-turn displays the most correlated phi(t),psi(t) rotations with its axis of rotation bisecting the angle defined by the H-C-H bonds. These positively correlated bond rotations give rise to "twisting" type motions of the HCH group. V5 and Y10 phi,psi bond rotations are also positively correlated, with their CbetaCalphaH groups undergoing similar "twisting" type motions. Motions of near-terminal residues G2 and G11 are less restricted and less correlated and are best described as wobbling-in-a-cone. V5 and Y10 side-chain motions, aside from being highly restricted, were found to be correlated with phi,psi bond rotations. At 303 K, where the hairpin is considered "unfolded," the peptide exists in a transient, collapsed state because backbone and side-chain motions of V5, G7, and Y10 remain relatively restricted, unlike their counterparts in GXG-based tripeptides. These results provide unique information toward understanding conformational variability in the unfolded state of proteins, which is necessary to solve the protein folding problem.  相似文献   

19.
20.
Having previously demonstrated that glucose transporter-4 (GLUT4) expression was reduced in aortas and carotid arteries of deoxycorticosterone acetate (DOCA) salt-hypertensive rats, we hypothesized that troglitazone (TG), through activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma), would stabilize GLUT4 expression and possibly preserve the differentiated phenotype in vascular smooth muscle cells. In DOCA salt-hypertensive rats treated with TG (100 mg/day), there was a significant (P < 0.001) decrease in systolic blood pressure (BP; 149.9 +/- 4.4 mmHg) compared with the untreated DOCA salt-hypertensive rats (202.2 +/- 10.34 mmHg). Separate trials with rosiglitazone (RS; 3 mg/day) demonstrated a significant (P < 0.001) decrease in BP (DOCA salt, 164.2 +/- 9.8 vs. DOCA-RS, 124.9 +/- 3.7 mmHg) comparable to that with TG. Expression of GLUT4, h-caldesmon, and smooth muscle myosin heavy chain SM2 was significantly decreased in aortas of DOCA salt-hypertensive rats and was reversed by TG to levels similar to those in aortas of sham-treated rats. TG (50 microM) induced GLUT4 and h-caldesmon expression in 24-h culture of explanted carotid arteries of DOCA salt-hypertensive rats, and the endogenous PPAR-gamma ligand 15-deoxy-Delta(12-14)-prostaglandin J(2) (PGJ(2); 20 microM) and TG (50 microM) similarly increased GLUT4, h-caldesmon, and SM2 protein expression in explanted aortas. The expression of activated, phosphorylated Akt was increased by PGJ(2) and TG with no significant effect on total Akt levels. Inhibition of phosphorylated Akt expression using the phosphatidylinositol 3-kinase inhibitor LY-294002 (16 microM) abrogated the increased expression of h-caldesmon and SM2. These data demonstrate that PPAR-gamma agonists maintain or induce expression of markers of the contractile phenotype independently of their effects on hypertension, and that this effect may be mediated through activation of phosphatidylinositol 3-kinase/Akt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号