首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study documents horizontal distribution and demography of Antarctic krill (Euphausia superba) from the Southern Ocean during January–March 2008. The cruise predominantly occurred in CCAMLR Subarea 48.6, where knowledge about the ecosystem is limited. E. superba were not found north of 52°S. The biomass, estimated from trawl catches, was highest (63.09 g/m2) at a station 680 km southeast of Bouvetøya and at two stations 1,400 and 600 km southeast and southwest of Bouvetøya, 54.67 and 61.38 g/m2, respectively. Body length ranged from 19 to 61 mm (N = 8,538), with a mean of 42.0 ± 6.4 mm (SD). The overall sex ratio was 1:1, 46.2% males (13.2% adults and 33.0% subadults), 46.1% females (33.6% adults and 12.5% subadults), while 7.5% were juveniles. Trawl stations dominated by adults were found west and north of Bouvetøya. Stations with high proportions of subadults and juveniles were mainly found southeast of the island. Four cluster groups were differentiated: analyzing data on krill sex proportions, maturity stages, hydrography, nutrients and chlorophyll concentrations. Two groups represented stations located in the northern part of the study area, where E. superba were absent; water temperatures were higher and the nutrient concentrations lower compared to the groups where E. superba were present. This study shows that bathymetric features like the North Weddell Ridge including Bouvetøya are important for concentrating krill probably due to water mass characteristics and advective processes which influence regional krill demography. The southern regions of CCAMLR sector 48.6 are essential for understanding regional krill recruitment and production.  相似文献   

2.
Knowledge about the protist diversity of the Pacific sector of the Southern Ocean is scarce. We tested the hypothesis that distinct protist community assemblages characterize large-scale water masses. Therefore, we determined the composition and biogeography of late summer protist assemblages along a transect from the coast of New Zealand to the eastern Ross Sea. We used state of the art molecular approaches, such as automated ribosomal intergenic spacer analysis and 454-pyrosequencing, combined with high-performance liquid chromatography pigment analysis to study the protist assemblage. We found distinct biogeographic patterns defined by the environmental conditions in the particular region. Different water masses harbored different microbial communities. In contrast to the Arctic Ocean, picoeukaryotes had minor importance throughout the investigated transect and showed very low contribution south of the Polar Front. Dinoflagellates, Syndiniales, and small stramenopiles were dominating the sequence assemblage in the Subantarctic Zone, whereas the relative abundance of diatoms increased southwards, in the Polar Frontal Zone and Antarctic Zone. South of the Polar Front, most sequences belonged to haptophytes. This study delivers a comprehensive and taxon detailed overview of the protist composition in the investigated area during the austral summer 2010.  相似文献   

3.
Microphytoplankton distribution in the Atlantic sector of theSouthern Ocean was investigated along a transect during theSAAMES II cruise undertaken in late austral summer (January/February) 1993. Samples were collected at 60 km intervals between34 and 70°S for the analysis of mineral nutrients, and theidentification and enumeration of microphytoplankton. Peaksin microphytoplankton abundance were recorded in the neriticwaters of Africa and Antarctica, at all major oceanic fronts,and in the marginal ice zone (MIZ). Partial correlation analysisindicated that 45% of the total variance associated with microphytoplanktonabundance could be explained by silicate and phosphate concentrations,while temperature accounted for 65% (P<0.001). Cluster andordination analyses identified two major groups of stations,one north and one south of the Subantarctic Front (SAF). Thisdivision appears to be related to differences in temperatureand silicate concentrations. Each region comprised distinctmicrophytoplankton subgroups associated with specific watermasses or hydrological features. Indicator species could beidentified for some water masses. In the MIZ, microphytoplanktonspecies composition and succession were strongly affected bysea-ice throughout the summer.  相似文献   

4.
Knowledge of cetacean species composition and their distribution in the south-east Atlantic sector of the Southern Ocean is scarce. During a survey in February–March 2008, systematic whale sightings were carried out along transect lines following the 5° and 15° E meridians between 35° and 67° S. In total, 67 toothed whales and 126 baleen whales were observed. Both fin whales (four animals) and Antarctic minke whales Balaenoptera bonaerenses (three animals) in addition to 16 individuals of unidentified species were among the observed baleen whales. The dominating baleen whale species in our study was humpback whales Megaptera novaeangliae with 108 individuals observed. They occurred single or in groups up to seven individuals (N mean = 2.5 ind) and eight of the counts were of calves. The relationship between humpback whale occurrence and environmental variables including Antarctic krill (Euphausia superba) abundance from acoustic recordings, hydrography, bathymetry and production was tested using general additive models. Only temperature increased the predictive power of the model with whale occurrence increasing with the decreasing temperature in more southern areas.  相似文献   

5.
The composition, biomass and cell size of phytoplankton taxonomicgroups were determined in the Hauraki Gulf and adjacent shelfof north-eastern New Zealand. In early spring, on the innershelf, over-winter mixing and upwelling supported a bloom dominatedby large, chain-forming diatoms in a moderately turbulent watercolumn. The bloom declined in late spring because of nutrientlimitation, and the assemblage evolved initially toward smalldiatoms, and eventually to co-occurrence of dinoflagellates,small nanoflagellates and picophytoplankton in early and latesummer. Mid- to outer-shelf biomass was much lower than inshore,and was dominated by small or motile taxa which were probablylimited by grazing and light. In early summer, strong upwellingdisplaced inner shelf phytoplankton to beyond the shelf edge,whilst enriching the shelf with nutrients. However, shelf phytoplanktonbiomass increased only after the relaxation of upwelling. TheHauraki Gulf was strongly stratified from early spring throughlate summer. The flora were seasonally less variable than onthe shelf, with a thecate dinoflagellate-dominated flora inearly spring, replaced post-bloom by the co-occurrence of presumablylow-nutrient-adapted autotrophic and/or heterotrophic dinoflagellates(most of which were non-thecate, and some toxic), nanoflagellatesand picophytoplankton. The succession in floristics was consistentwith a change from an autotrophic toward a heterotrophic ecosystemfrom spring to summer. Implications for secondary production,and vertical and lateral organic carbon export on the shelf,are discussed.  相似文献   

6.
Horizontal distributions of coccolithophores were observed in sea surface water samples collected on the RV Polarstern between 27 February and 10 April, 2001, in the Pacific sector of the Southern Ocean (Bellingshausen and Amundsen Seas). These samples were analyzed to gain information about the distribution of coccolithophores in relation to the oceanic fronts of the Southern Ocean. A total of fifteen species of coccolithophores were identified, showing cell abundances of up to 67 × 103 cells/l down to 63°S. Emiliania huxleyi was the most abundant taxon, always accounting for more than 85% of the assemblage. The second most abundant species was Calcidiscus leptoporus, with values lower than 7%. Cell density increases significantly in both the Subantarctic and Polar Fronts (155 and 151 × 103 cells/l, respectively), decreasing abruptly in the intervening Polar Frontal Zone and to the south of the Polar Front. Although temperature at high latitudes is the main factor controlling the biogeographical distribution of coccolithophores, at the regional level (Southern Ocean) the frontal systems, and consequently nutrient distribution, play a crucial role.  相似文献   

7.
Phytoplankton in the mixed layer is exposed to increasing levels of light when transported to the surface layer of the ocean. The photoprotective response of natural assemblages of phytoplankton can differ among community structures. We investigated photoprotective acclimation and xanthophyll cycle pigments in size-fractionated natural phytoplankton assemblages during the austral summer in the Indian sector of the Southern Ocean. We estimated concentrations of phytoplankton pigments in the micro-size fractions (>20 μm) and nano-size fractions (2–20 μm) by subtracting concentrations in the <20 μm fractions from concentrations in the bulk samples, and by subtracting concentrations in the <2 μm fractions from concentrations in the <20 μm fractions, respectively. Changes in the ratios of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (DT) were determined at three optical depths in the mixed layer and during 48 h deck incubations under solar photosynthetically available radiation and ultraviolet radiation. Large variations in (DD + DT)/Chl a in the mixed layer (percent coefficient of variation >67 %) and in deck incubation bottles under variable light conditions (>75 % of the temporal variation) for the micro-size fractions suggest a higher potential for photoprotective acclimation than for the nano-size fractions. Decreases in DT/(DD + DT) with increases in the optical depth of the mixed layer (ζ MLD) suggest that larger variations in light availability in the mixed layer might predict lower values of DT/(DD + DT) at the surface, regardless of cell size.  相似文献   

8.
Microzooplankton grazing was investigated in surface waters of the Indo-Pacific and Atlantic sectors of the Southern Ocean by the dilution method. Phytoplankton growth varied mainly between 0.1 and 0.4 day−1, and microzooplankton grazing between 0.0 and 0.3 day−1. Great fluctuations in phytoplankton growth rate were observed at one station within 3 weeks and between closely spaced stations. Microzooplankton grazing rates were similar to phytoplankton growth rate despite the variation of phytoplankton growth rates, although in some cases, phytoplankton growth overwhelmed microzooplankton grazing. These observations suggest that microzooplankton are the main consumers of primary producers, and that steady state between phytoplankton growth and microzooplankton grazing is usually established in the Southern Ocean in austral summer. Received: 5 November 1996 / Accepted: 4 March 1997  相似文献   

9.
Phytoplankton population dynamics play an important role in biogeochemical cycles in the Southern Ocean during austral summer. However, the relationship between phytoplankton community composition and primary productivity remains elusive in this region. We investigated the community composition and photosynthetic physiology of surface phytoplankton assemblages in the Australian sector of the Southern Ocean from December 2010 to January 2011. There were significant latitudinal variations in hydrographic and biological parameters along 110°E and 140°E. Surface (5 m) chlorophyll a (chl a) concentrations measured with high-performance liquid chromatography varied between 0.18 and 0.99 mg m?3. The diatom contribution to the surface chl a biomass increased in the south, as estimated with algal chemotaxonomic pigment markers, while the contributions of haptophytes and chlorophytes decreased. In our photosynthesis–irradiance (PE) curve experiment, the maximum photosynthetic rate normalized to chl a ( \(P_{ \hbox{max} }^{*}\) ), initial slope (α *), the maximum quantum yield of carbon fixation (Φ c max), and the photoinhibition index (β *) were higher in the region where diatoms contributed >50 % to the chl a biomass. In addition, there were statistically significant correlations between the diatom contribution to the chl a biomass and the PE parameters. These results suggested that the changes in the phytoplankton community composition, primarily in diatoms, could strongly affect photosynthetic physiology in the Australian sector of the Southern Ocean.  相似文献   

10.
Depth-stratified vertical sampling was carried out during the New Zealand International Polar Year cruise to the Ross Sea on board the RV Tangaroa in February–March 2008. The distribution (horizontal and vertical), density and population biology of Salpa thompsoni were investigated. Salps were found at two of the four major sampling locations, e.g. near the continental slope of the Ross Sea and in the vicinity of seamounts to the north of the Ross Sea. Both abundance and biomass of S. thompsoni were highest near the seamounts in the Antarctic Circumpolar Current reaching ~2,500 ind 1,000 m−3 and 8.2 g dry wt 1,000 m−3 in the water column sampled. The data showed that S. thompsoni populations were able to utilize horizontal and vertical discontinuities in water column structure, in particular the warm Circumpolar Deep Water (CDW), to persist in the high Antarctic. Although salps appeared to continue migrating to the surface colder layers to feed, both aggregate chain and young embryo release seem to be restricted to the CDW. This study for the first time has provided evidence that low Antarctic salp species may successfully reproduce in the hostile high Antarctic realm.  相似文献   

11.
The dynamics of protozoa were investigated during two cruises in the Indian sector of the Southern Ocean: the early spring ANTARES 3 cruise (28 September to 8 November 1995) and the late summer ANTARES 2 cruise (6 February to 8 March 1994). Biomass and feeding activity of protozoa were measured as well as the biomass of their potential prey – bacteria and phototrophic flagellates – along the 62°E meridian. The sampling grid extended from the Polar Frontal region to the Coastal and Continental Shelf Zone in late summer and to the ice edge in spring, crossing the Antarctic Divergence. Protozoan biomass, although low in absolute terms, contributed 30% and 20% to the total microbial biomass (bacteria, phytoplankton and protozoa) in early spring and late summer, respectively. Nanoprotozoa dominated the total protozoan biomass. The geographical and seasonal distribution of protozoan biomass was correlated with that of phototrophic flagellates. However, bacterial and phototrophic flagellate biomass were inversely correlated. Phototrophic flagellates dominated in the Sea Ice Zone whereas bacteria were predominant at the end of summer in the Polar Frontal region and Coastal and Continental Shelf Zone. Furthermore, bacteria were the most important component of the microbial community (57% of the total microbial biomass) in late summer. Phototrophic flagellates were ingested by both nano-and microprotozoa. In contrast, bacteria were only ingested by nanoprotozoa. Protozoa controlled up to 90% of the daily bacterial production over the period examined. The spring daily protozoan ingestion controlled more than 100% of daily phototrophic flagellate production. This control was less strong at the end of summer when protozoan grazing controlled 42% of the daily phototrophic flagellate production. Accepted: 30 October 1999  相似文献   

12.
The abundance and species composition of phytoplankton were investigated at stations in a permanently ice-free (61°S) and seasonally ice-covered area (64°S and 66°30′S) in the eastern Indian sector of the Southern Ocean between November 2001 and March 2002. Although a phytoplankton bloom occurred just after retreat of the sea ice at both stations in the seasonally ice-covered area, vertical stability of the water column during the bloom was weak at the most southerly station. This shows that a bloom can form even under weak vertical stability. In the bloom, diatoms dominated under weak vertical stability and Phaeocystis under strong vertical stability. In the latter case, ice algae largely contributed to development of the bloom. In the later observation period, a subsurface chlorophyll maximum (SCM) was observed at 61°S and 64°S. Species composition was different between the mixed layer and SCM at 64°S, but was uniform with depth at 61°S, indicating that the SCM is formed by different mechanisms.  相似文献   

13.
Photosynthetic oxygen production by phytoplankton and community respiration in the Indian sector of the Antarctic Ocean were estimated from changes in oxygen concentrations in light and dark bottles. Gross production varied between 0.1 and 5.1 µmol O2 l-1 day-1. In the same water, community respiration (the sum of oxygen consumption by heterotrophs and phytoplankton) was 0.4-3.6 µmol O2 l-1 day-1, which accounted for 47-343% of the gross production. Algal and heterotrophic respirations were distinguished using some assumptions. These estimates showed that heterotrophic respiration accounted for most of the community respiration (70-91% depending upon the assumptions), indicating that heterotrophic respiration plays an important role in the mineralization of phytoplankton production in the surveyed sea area. Gross production rate correlated with chlorophyll a concentration, showing that the photosynthetic production rate of oxygen depends on the abundance of phytoplankton. Moreover, there was a significant relationship between gross production and community respiration rates. These regression equations suggested that negative net production occurred under the usually low concentration of chlorophyll observed in the Indian sector of the Antarctic Ocean. Hence, the net exchange of carbon dioxide due to biological processes through the sea surface seemed to be not as large as expected in the Antarctic Ocean, although the number of data were limited at this stage.  相似文献   

14.
Variations of phytoplankton assemblages were studied in November–December 2001, in surface waters of the Southern Ocean along a transect between the Sub-Antarctic Zone (SAZ) and the Seasonal Ice Zone (SIZ; 46.9°–64.9°S; 142°–143°E; CLIVAR-SR3 cruise). Two regions had characteristic but different phytoplankton assemblages. Nanoflagellates(<20 μm) and pico-plankton (∼2 μm) occurred in similar concentrations along the transect, but were dominant in the SAZ, Sub-Antarctic Front (SAF), Polar Front Zone (PFZ) and the Inter-Polar Front Zone (IPFZ), (46.9°–56.9°S). Along the entire transect their average cell numbers in the upper 70 m of water column, varied from 3 × 105 to 1.1 × 106 cells l−1. Larger cells (>20 μm), diatoms and dinoflagellates, were more abundant in the Antarctic Zone-South (AZ-S) and the SIZ, (60.9°–64.9°S). In AZ-S and SIZ diatoms ranged between 2.7 × 105 and 1.2 × 106 cells l−1, dinoflagellates from 3.1 × 104 to 1.02 × 105 cells l−1. A diatom bloom was in progress in the AZ-S showing a peak of 1.8 × 106 cells l−1. Diatoms were dominated by Pseudo-nitzschia spp., Fragilariopsis spp., and Chaetoceros spp. Pseudo-nitzschia spp. outnumbered other diatoms in the AZ-S. Fragilaropsis spp. were most numerous in the SIZ. Dinoflagellates contained autotrophs (e.g. Prorocentrum) and heterotrophs (Gyrodinium/Gymnodinium, Protoperidinium). Diatoms and dinoflagellates contributed most to the cellular carbon: 11–25 and 17–124 μg C l−1, respectively. Small cells dominated in the northern region characterized by the lowest N-uptake and new production of the transect. Larger diatom cells were prevalent in the southern area with higher values of N-uptake and new production. Diatom and nanoflagellate cellular carbon contents were highly correlated with one another, with primary production, and productivity related parameters. They contributed up to 75% to the total autotrophic C biomass. Diatom carbon content was significantly correlated to nitrate uptake and particle export, but not to ammonium uptake, while flagellate carbon was well correlated to ammonium uptake, but not to export. Diatoms have contributed highly to particle export along the latitudinal transect, while flagellates played a minor role in the export.  相似文献   

15.
The horizontal and vertical distributions of fish were examined off Lützow-Holm Bay in the Indian Ocean sector of the Southern Ocean during midnight sun in January 2005. Fish were sampled from six discrete depth layers (0–2,000 m). The most abundant fish in layers from the surface to 200 m were larval stages of Electrona antarctica and Notolepis coatsi. In layers from 200 to 2,000 m, fish assemblages were relatively uniform among all stations and were dominated by E. antarctica (juvenile–subadult), Cyclothone microdon, and Bathylagus antarcticus. Cluster analysis revealed three epipelagic communities related to water temperature and salinity. An ontogenetic habitat shift to deeper layers was apparent for E. antarctica, N. coatsi, and B. antarcticus. Preferences for warm waters were observed in E. antarctica (larvae) and N. coatsi (preflexion to flexion larvae), although they were distributed across a broad range of temperature and salinity in epipelagic zones.  相似文献   

16.
The role of iron and light in controlling photosynthate productionand allocation in phytoplankton populations of the Atlanticsector of the Southern Ocean was investigated in April–May1999. The 14C incorporation into five biochemical pools (glucan,amino acids, proteins, lipids and polysaccharides) was measuredduring iron/light perturbation experiments. The diurnal Chla-specific rates of carbon incorporation into these pools didnot change in response to iron addition, yet were decreasedat 20 µmol photons m–2 s–1, an irradiancecomparable with the one at 20–45 m in situ depth. Thissuggests that the low phytoplankton biomass encountered (0.1–0.6µg Chl a L–1) was mainly caused by light limitationin the deep wind mixed layer (>40 m). Regional differencesin Chl a-specific carbon incorporation rates were not foundin spite of differences in phytoplankton species composition:at the Antarctic Polar Front, biomass was dominated by a diatompopulation of Fragilariopsis kerguelensis, whereas smaller cells,including chrysophytes, were relatively more abundant in theAntarctic Circumpolar Current beyond the influence of frontalsystems. Because mixing was often in excess of 100 m in thelatter region, diatom cells may have been unable to fulfil theircharacteristically high Fe demand at low average light conditions,and thus became co-limited by both resources. Using a modelthat describes the 14C incorporation, the consistency was shownbetween the dynamics in the glucan pool in the field experimentsand in laboratory experiments with an Antarctic diatom, Chaetocerosbrevis. The glucan respiration rate was almost twice as highduring the dark phase as during the light phase, which is consistentwith the role of glucan as a reserve supplying energy and carbonskeletons for continued protein synthesis during the night.  相似文献   

17.
During the ANTARES 3 cruise in the Indian sector of the SouthernOcean in October–November 1995, the surface waters ofKerguelen Islands plume, and the surface and deeper waters (30–60m) along a transect on 62°E from 48°36'S to the iceedge (58°50'S), were sampled. The phytoplankton communitywas size-fractionated (2 µm) and cell numbers, chlorophyllbiomass and carbon assimilation, through Rubisco and ß-carboxylaseactivities, were characterized. The highest contribution of<2 µm cells to total biomass and total Rubisco activitywas reported in the waters of the Permanent Open Ocean Zone(POOZ) located between 52°S and 55°S along 62°E.In this zone, the picophytoplankton contributed from 26 to 50%of the total chlorophyll (a + b + c) with an average of 0.09± 0.02 µg Chl l–1 for <2 µm cells.Picophytoplankton also contributed 36 to 64% of the total Rubiscoactivity, with an average of 0.80 ± 0.30 mg C mg Chla–1 h–1 for <2 µm cells. The picophytoplanktoncells had a higher ß-carboxylase activity than largercells >2 µm. The mixotrophic capacity of these smallcells is proposed. From sampling stations of the Kerguelen plume,a relationship was observed between the Rubisco activity perpicophytoplankton cell and apparent cell size, which variedwith the sampled water masses. Moreover, a depth-dependent photoperiodicityof Rubisco activity per cell for <2 µm phytoplanktonwas observed during the day/night cycle in the POOZ. In thenear ice zone, a physiological change in picophytoplankton cellsfavouring phosphoenolpyruvate carboxykinase (PEPCK) activitywas reported. A species succession, or an adaptation to unfavourableenvironmental conditions such as low temperature and/or availableirradiance levels, may have provoked this change. The high contributionof picophytoplankton to the total biomass, and its high CO2fixation capacity via autotrophy and mixotrophy, emphasize thestrong regeneration of organic materials in the euphotic layerin the Southern Ocean.  相似文献   

18.
Algal and bacterial processes in platelet ice during late austral summer   总被引:1,自引:0,他引:1  
 The biota inhabiting layers of platelet ice were investigated in the Weddell Sea during late austral summer. Due to meltwater release, the salinity of the interstitial water between platelets was reduced. Algae and bacteria accumulated within this ice environment attaining concentrations of up to 500 μg in total pigments (chlorophyll a plus phaeopigments) and 2 mg in bacterial biomass per liter. Pennate diatoms of the genus Fragilariopsis were most common in the platelet layer, while ice-free water was dominated by autotrophic nanoflagellates. Protozoa contributed only 5% or less to the total protistan (microalgae plus protozoa) cell concentration in the ice, compared to about 10% in open water, thus suggesting a low grazing pressure within the platelet habitat. The bulk of bacterial biomass occurred within the dense assemblages of pennate diatoms that grew attached to the ice platelets. Algal and bacterial concentrations in the interstitial water between platelets were much lower. Measurements of bacterial growth showed that substantial heterotrophic potential can be established within assemblages inhabiting late summer platelet ice. Small-scale analyses of bacterial activity patterns revealed that those bacteria that were closely associated with ice and/or algae showed considerably less biomass-specific substrate uptake than cells that occurred freely suspended in the interstitial water, indicating that their physiological state differed. Received: 21 October 1995/Accepted: 27 January 1996  相似文献   

19.
The present paper describes latitudinal and vertical changes in the composition, abundance and diversity of copepods in the Indian sector of the Antarctic Ocean, during the end of austral summer along a transect on 66°30′E between 43 and 62°S, within three layers (600–0, 200–0, 100–0 m). Highest copepod densities were noted in the central part of the transect, between the Antarctic Divergence and the Antarctic Convergence, with a maximum in the Antarctic Divergence zone, particularly in the upper levels of the water column. A total number of 80 copepod species were identified over the entire survey area. The south end and the central part of the transect comprised a small number of species. North of the Antarctic Convergence, this number increased markedly with the progressive disappearence of those species characteristic of Antarctic waters and their replacement by temperate and subtropical species. Generally, small copepods, particularly Oithona similis, Oithona frigida and Ctenocalanus citer, dominated in numbers in both Antarctic and sub-Antarctic areas. The contribution of large species to total copepod numbers was much lower, with Calanus simillimus in the central part of the transect, Pleuromamma borealis in the subtropical zone and Calanus propinquus in the southern part. Correspondence analysis showed a marked latitudinal gradient in population structure with four groups of samples and species corresponding to four latitudinal zones. Community structure (species richness, relative dominance index, evenness, Shannon species diversity index) and species abundance patterns (as rank-frequency diagrams) suggested that the maturity and species richness increased gradually from south to north. A low diversity index and evenness were observed in the area of the Antarctic Divergence, whereas the convergence zone showed high diversity and evenness. Conversely, the frontal zone showed high diversity and evenness. Distribution appeared unrelated to chlorophyll concentrations and on the large scale was related to the hydrologic characteristics. Received: 8 May 1996 / Accepted: 27 August 1996  相似文献   

20.
Surface phytoplankton assemblages were studied in January/February 1999 in the Crozet Basin (43°50S–45°20S; 61°E–64°30E) between the northern Polar Zone and the Agulhas Front. Cell concentrations increased several fold northwards from the SubAntarctic Zone (SAZ) and reached peak numbers (average 2×106 cells l–l ) in the central and western Subtropical Zone (STZ). The most spectacular increase in cell numbers occurred at the Subtropical Front (STF) and was attributed to dinoflagellates and diatoms. Nanoflagellates and picoplankton were dominant in the entire area (average 2.8×105–1.6×106 cells l–l). In the SAZ they were followed by coccolithophorids, dinoflagellates and diatoms. In the STZ coccolithophorids were often outnumbered by dinoflagellates. Diatoms were dominated by Pseudonitzschia delicatissima and were generally the least abundant algae, but reached peak densities of 1.2–4×105 cells l–l at, and north of the STF. Coccolithophorids contained mainly Emiliania huxleyi, but in the SAZ and STF Gephyrocapsa oceanica was a co-dominant species. Dinoflagellates were dominated by nano-sized species of Gymnodinium, Gyrodinium and Prorocentrum. The numbers of dinoflagellate and coccolithophorid species increased considerably in the convergence zone (STZ), which suggests their in-situ development. Heterotrophic dinoflagellates and ciliates were mainly present in the subtropics. Cell carbon biomass was attributed chiefly to auto- and heterotrophic dinoflagellates (av. 23–72 g C l–l; 68–87%), showing their important contribution to the carbon flow. Variations in cell concentrations across the fronts and water masses, and the distribution of major species were most likely controlled by the combined effect of such factors as nutrient renewal in the convergence zone, availability of iron, increased water-column stability at fronts, and high horizontal gradients in surface-water temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号