首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We are examining the relationship of RNA metabolism and de novo pyrimidine synthesis as parameters of malignant transformation. These initial experiments on normal hamster embryo fibroblasts have shown that excreted nucleosides are markers for intracellular RNA metabolism. We employed affinity chromatography to concentrate the nucleosides in the medium and sensitive column chromatographic procedures to quantitatively measure them. The excretion of pyrimidine nucleoside from hamster embryo fibroblasts in sulture was found to be dependent on the growth state of the cells, with the greatest accumulation occurring cell quiescence. The major nucleoside excretion products, uridine and cytidine, were both normal end products of RNA metabolism and the major nucleoside excretion products from cultured cells. The modified nucleosides N-1-methylguanosine, N-2-methylguanosine, N-2-dimethylguanosine, N-4-acetylcytidine, N-1-methylinosine, pseudouridine, N-1-methyladenosine, N-3-methylcytidine, and 5-methyleycytidine were found, as were several unidentified nucleosides.  相似文献   

2.
A novel mass spectrometric method has been developed for the detection and identification of dihydrouridine, ribothymidine, 4-thiouridine, and 7-methylguanosine in Escherichia coli tRNAs. The method utilizes (a) Pyrolysis-Electron Impact-Mass Spectrometry (PYEIMS), a procedure which releases the purine and pyrimidine bases from the intact, underivatized tRNA molecule. The mass spectrum exhibits intense peaks for the bases deriving from the common nucleosides in tRNA as well as peaks of much lower intensity at mass values expected for the bases from modified components known to be present in the tRNA; and, (b) Collisional Activation Mass Spectrometry (CAMS), a technique which permits the isolation of a single ion species from a complex mass spectrum. Subsequent fragmentation of that species yields a characteristic collisional activation spectrum. Such analyses of the ion species that were presumed to originate from H2Urd, rThd, 4SUrd, and 7MeGuo in the tRNA were used to define the structure and, thus, the identity of each component. Attributes of the PYEICAMS technique are that (a) precise structural elucidation of minor nucleosides present in tRNAs at the 1 - 4% level is obtained; (b) the high order of sensitivity allows the analysis to be done on microgram amounts of tRNA; and (c) there is no requirement for enzymatic or chemical hydrolysis of the tRNA or for subsequent chromatographic separation methods.  相似文献   

3.
Purified bulk tRNA from Methanococcus vanielii (carbon source, formate) showed variation in the modified nucleoside pattern reported for Escherichia coli as analyzed by both ion-exchange and thin-layer chromatography. Ribothymidine and 7-methylguanosine were absent; 1-methyladenosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, thiolated nucleosides, pseudouridine, dihydrouridine, and O2'-methylcytidine were quantitated. In vitro methylation by M. Vannielii extracts with S-adenosylmethionine and undermethylated E. coli tRNA revealed active tRNA methyltransferases for formation of methylated residues found in native M. vannielii tRNA, but none for the formation of 7-methylguanosine or ribothymidine. The native M. vannielii tRNA became methylated in the 7-methylguanosine position by E. Coli extracts, but ribothymidine was not formed. Both M. vannielii and E. coli tRNA methyltransferases produced unidentified methylated residues in tRNA's lacking or deficient in ribothymidine.  相似文献   

4.
Wyosine la, one of the fluorescent hypermodified Y nucleosides found in tRNAsPhe, was synthesized chemically from its biogenetic precursor guanosine 2. The route involved transformation of 2 into the tricyclic structure 3a and subsequent methylation at N-4. The major products of various methylation procedures were isomers of wyosine, methylated at N-5 (3b) or at N-1 (4). Mesoionic compound 4 is a new analogue of 7-methylguanosine 5, modified nucleoside occurring in the unique positions in transfer, messenger and ribosomal RNAs. The chromatographic and spectral characteristics of wyosine and its isomers is given.  相似文献   

5.
Six thionucleosides found in Bacillus subtilis transfer ribonucleic acids were investigated: N6-(delta 2-isopentenyl)-2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, 4-thiouridine, 2-methylthioadenosine, N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine, and one unknown (X1). The presence of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine was demonstrated based on the affinity of the transfer ribonucleic acid containing it for an immunoadsorbent made with the antibody directed toward N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine. The existance of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine in two species of lysine transfer ribonucleic acids was also confirmed by high-resolution mass spectrometry. Four of these thionucleosides--N6-(delta 2-isopenenyl)-2-methylthioadenosine, 2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, and the unknown designated X1--occurred only in specific areas in the elution profile of an RPC-5 column and probably affect the chromatographic properties of the transfer ribonucleic acids containing them. In contrast with Escherichia coli, where 4-thiouridine is the most frequent type of sulfur-containing modification, approximately one-third of the sulfur groups in B. subtilis transfer ribonucleic acid are present as thiomethyl groups on the 2 position of an adenosine or modified adenosine residue.  相似文献   

6.
Transfer RNA from Escherichia coli C6, a Met-, Cys-, relA- mutant, was previously shown to contain an altered tRNA(Ile) which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676-7683). We now report the purification of this altered tRNA(Ile) and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNA(Ile) purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNA(Ile) (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl approximately AMP.Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNA(Ile) bound more efficiently to its synthetase compared to normal tRNA(Ile). Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNA(Ile) contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNA(Ile) contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNA(Ile) without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNA(Ile) has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNA(Ile) from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNA(Ile) for aminoacylation is discussed.  相似文献   

7.
Total mammalian tRNAs contain on the average less than one mole of ribothymidine per mole of tRNA. Mammalian tRNAs can be grouped into at least four classes, depending upon their ribothymidine content at position 23 from the 3′ terminus. Class A contains tRNA in which a nucleoside other than uridine replaces ribothymidine (tRNAiMet); Class B contains tRNA in which one mole of a modified uridine (rT, ψ, or 2′-O-methylribothymidine) is found per mole of tRNA (tRNASer, tRNATrp, and tRNALys, respectively). Class C contains tRNA in which there is a partial conversion of uridine to ribothymidine (tRNAPhe, tRNA1Gly, tRNA2Gly); Class D contains tRNA which totally lacks ribothymidine (tRNAVal). Only those tRNAs in Class C are acceptable substrates for E.coli uridine methylase, under the conditions used in these studies. These observations cannot be adequately explained solely on the basis of the presence or absence of a specific “universal” nucleoside other than U or rT at position 23 from the 3′ terminus. However, correlations can be made between the ribothymidine and 5-methylcytosine content of eucaryotic tRNA. We postulate that the presence of one or more 5-methylcytosines in and adjacent to loop III (minor loop) in individual tRNAs act to regulate the amount of ribothymidine formed by uridine methylase. Several experiments are proposed as tests for this hypothesis.  相似文献   

8.
R E Hurd  B R Reid 《Biochemistry》1979,18(18):4017-4024
Analysis of the low-field nuclear magnetic resonance (NMR) spectra of several class 1 D4V5 transfer ribonucleic acid (tRNA) species containing 7-methylguanosine in their variable loops reveals a set of six to seven tertiary base pair resonances, one of which is always located at ca. --13.4 ppm. Other tRNA species which do not contain 7-methyl-guanosine do not contain the tertiary resonance at --13.4 ppm. Chemical removal of 7-methylguanosine from several tRNAs containing the same dihydrouridine (DHU) helix sequence as yeast tRNAPhe results in the loss of the --13.4-ppm tertiary resonance. In the initiator methionine tRNA, which contains a different DHU helix sequence, the 7-methylguanosine hydrogen bond has been assigned at --14.55 ppm by chemical removal of this residue. In these experiments the aromatic C8H proton of 7-methylguanosine was also assigned (--9.1 ppm). The unexpectedly low-field position of the 7-methylguanosine resonance is explained by the deshielding effect of the delocalized positive charge in this nucleoside.  相似文献   

9.
A selenium-containing nucleoside, 5-methylaminomethyl-2-selenouridine (mnm5se2U), is present in lysine- and glutamate-isoaccepting tRNA species of Escherichia coli. The synthesis of mnm5se2U is optimum (4 mol/100 mol tRNA) when selenium is present at about 1 microM concentration and is neither decreased by a high (8 mM) level of sulfur in the medium nor increased by excessive (10 or 100 microM) levels of selenium. Lysine- and glutamate-isoaccepting tRNA species that contain 5-methylaminomethyl-2-thiouridine (mnm5s2U) coexist with the seleno-tRNAs in E. coli cells and a reciprocal relationship between the mnm5se2U- and the mnm5s2U-containing species is maintained under a variety of growth conditions. The complete 5-methylaminomethyl side chain is not a prerequisite for introduction of selenium at the 2-position. In E. coli mutants deficient in the ability to synthesize the 5-methylaminomethyl substituent, both the 2-thiouridine and the corresponding 2-selenouridine derivatives of intermediate forms are accumulated. Broken cell preparations of E. coli synthesize mnm5se2U in tRNAs by an ATP-dependent process that appears to involve the replacement of sulfur in mnm5s2U with selenium.  相似文献   

10.
K Marcu  D Marcu    B Dudock 《Nucleic acids research》1978,5(4):1075-1092
An unusual class of wheat germ tRNAs has been isolated which completely lacks ribothymidine (rT) and contains an unmodified uridine in its place. We discuss here the isolation, identification and properties of these tRNAs. The rT-lacking tRNAs of wheat germ are essentially limited to the glycine isoacceptors (a minimum of five identifiable species), three threonine and at least, one tyrosine tRNA. All tRNAs were obtained 70-100% pure by chromatographic methods, and were detected by their ability to be methylated by E. coli rT-forming uracil methyltransferase with methyl-labeled S-adenosyl-L-methionine (SAM) as the methyl donor. In vitro methylation of each of the tRNAs resulted in the formation of 1 mole of rT per mole of tRNA. In the one case analyzed in detail (tRNA1Gly), all of the rT was found to be located at the 23rd position from the 3' end of the tRNA molecule. Following complete digestion of four highly purified glycine isoacceptors (tRNAGly1,4,5,6) to nucleosides and subsequent periodate oxidation and 3H potassium borohydride reduction, all were found to contain an unusually high level of 5-methylcytidine (m5C) (3-4 residues per molecule), and all contained no rT. The possible correlation between the presence of m5C and the absence of rT is discussed. All of the chromatographically purified glycine tRNAs function in a wheat germ cell-free protein synthesizing system and polymerize glycine in response to either poly G or poly (G, U).  相似文献   

11.
The ribosomal and transfer ribonucleic acid (tRNA) from Mycoplasma mycoides var. capri, grown in a medium containing uridine-((14)C)-5'-triphosphate and cytidine-(5-(3)H)-5'-triphosphate, were isolated and separated. The uridine in both species of RNA was shown to contain (14)C and the cytidine to contain both (3)H and (14)C. Comparison of the labeling of 4-thiouridine and pseudouridine, obtained from an enzymatic digest of the RNA, indicates that their biosynthetic precursor is uridine, not cytidine. It is probable that ribothymidine and dihydrouridine have the same derivation.  相似文献   

12.
Photochemical crosslinking studies on two formylmethionine tRNAs of Escherichia coli are consistent with the hypothesis that the role of 7-methylguanosine is to stabilize a tertiary structure of tRNA in which the “extra” loop is folded over so as to be close to the 4-thiouridine region of the molecule. In tRNAfmet 3, which differs from tRNAfmet 1 only by substitution of an adenosine for the 7-methylguanosine in the “extra” loop, crosslinking was virtually abolished when the tRNA was placed in 40 mm Na+, whereas tRNAfmet 1 in 40 mm Na+ was crosslinked to 95% of the maximum extent observed for both tRNAs in Mg2+. Even in Mg2+, a difference in structure between the two tRNAs could be detected by means of a two-fold decrease in the rate of crosslinking in tRNAfmet 3 as compared to tRNAfmet 1. Comparison of crosslinking in the native and metastable denatured forms of tRNATrp of E. coli revealed that these structures also differ with respect to the orientation and/or distance between 4-thiouridine (8) and cytidine (13), since denaturation abolished crosslinking. However, separation of these two residues is not obligatory for denaturation, since crosslinked tRNATrp could still be denatured. A 30% difference in fluorescence between the native and denatured forms of crosslinked-reduced tRNATrp infers an increase in hydrophilicity in the 4-thiouridine region upon denaturation.  相似文献   

13.
The effect of light on nucleotide modifications in the tRNA of cucumber (Cucumis sativus L. var. Guntur) cotyledons was studied by chromatographic, electrophoretic and immunological methods. The tRNA from light-grown tissue showed the absence of 2-methylguanosine and a decrease in the relative proportions of ribothymidine and cytokinin-active ribonucleosides when compared to those produced from dark-grown tissue. On the other hand, a significant amount of one species of 2′-O-methyldinucleotide was observed in the tRNA of light-grown tissue which was not detected in the dark-grown tissue. Also, tRNA from light-grown tissue had higher levels of another species of 2′-O-methyldinucleotide. The results showed no difference in the amounts of other modified nucleosides in tRNA between tissues grown under the two conditions. 2′-O-Methyl-l-methyladenosine, a nucleotide modified both in the base and the ribose, apparently specific to plant tRNAs, has been found to be present in the RNA of both light- and dark-grown tissues. These results on the variation in modified nucleotides suggest that light has some role in nucleotide modification and, consequently, in cellular functions.  相似文献   

14.
15.
Escherichia coli initiator methionine tRNA labeled in vivo with 5-fluorouracil (FUra) has been isolated and characterized. The tRNA, with essentially all its uracil and uracil-derived minor bases replaced by FUra, was purified by sequential chromatography, first on diethylaminoethylcellulose (DEAE-cellulose), at pH 8.9, followed by chromatography on Sepharose 4B, using a reverse salt gradient, then on DEAE-Sephadex A-50, and finally on benzoylated DEAE-cellulose. The last step resolved two FUra-substituted tRNAfMet-iso-accepting species, each with a specific activity over 1500 pmol/A260. Kinetic analysis shows both are aminoacylated at the same rate; apparent KmS for the two are 0.92 and 0.94 microM, compared with 1.7 microM for normal tRNAfMet. Chromatographic differences between the two forms of fluorinated tRNAfMet persist after aminoacylation, and the two tRNAs are not interconverted by denaturation and renaturation. The isoacceptors have nearly identical nucleoside composition, and both contain 7-methylguanosine and 2'-O-methylcytidine as the only modified nucleosides. Analysis of complete RNase T1 digests of the two methionine tRNAs shows that they differ in only one oligonucleotide. The sequence 20FpApGp, derived from the dihydrouridine loop and stem region, which is found in one of the isoaccepting forms of the tRNA, is replaced by an oligonucleotide containing adenine and guanine, but no FUra in the other. A modified FUra, with the properties of a 5-fluoro-5,6-dihydrouracil derivative, is detected in this tRNA. 19F NMR spectra of the two species of FUra-substituted initiator tRNA show 9-10 resolved resonances for the 12 FUra residues incorporated. The spectra differ primarily in the shift of one peak in the form lacking the sequence 20FpApGp, from 4.8 ppm downfield from free FUra (= 0 ppm) to 14.9 ppm upfield from the standard.  相似文献   

16.
Transfer RNA from Escherichia coli C6, a Met, Cys, relA mutant, was previously shown to contain an altered tRNAIle which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676–7683). We now report the purification of this altered tRNAIle and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNAIle purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNAIle (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl ∼ AMP · Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNAIle bound more efficiently to its synthetase compared to normal tRNAIle. Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNAIle contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNAIle contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNAIle without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNAIle has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNAIle from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNAIle for aminoacylation is discussed.  相似文献   

17.
It was shown that tRNA fromAzotobacter vinelandii grown in the presence of ammonium chloride lacks ribothymidine while that grown in the absence of the ammonium salt contains this modified nucleoside. [32P]-Labelled tRNA from this organism grown in a medium containing the ammonium salt was digested with RNase T1 and the pseudouridinecontaining tetranucleotide, common to all tRNAs was isolated and analysed for the nucleoside replacing the ribothymidine. It was found to be uridine. Cells previously labelled with [32P]-phosphate in the ammonium salt medium were washed and incubated in the ammonium saltfree medium to test whether ribothymidine would be formed upon removal of the ammonium ions. Methylation of the uridine did not take place.  相似文献   

18.
19.
Two new modified uracil nucleosides, 5-carbamoylmethyuridine (ncm5U, I) and 5-carbamoylmethyl-2-thiouridine (ncm5s2U, II) were isolated from a 24 hr collection of a normal human urine. The structures were assigned on the basis of UV, NMR and mass spectral data and confirmed by comparison of the spectral data and HPLC mobilities with those of authentic samples. On the basis of experimental data it appears possible that 5-carbamoylmethyl-2-thio-uridine (ncm5s2U, II) may be a degradation product produced from a labile precursor by the chemical treatments during the isolation procedure. However, the other nucleoside (ncm5U,I) certainly appears to be of metabolic origin and was also found in the urines of one chronic myelogenous leukemia and one lung carcinoma patient. Abbreviations used are: tRNA-transfer ribonucleic acid, TMS-trimethylsilyl, RP-HPLC--reverse phase high performance liquid chromatography, EI--electron impact, cm5U-5-carboxymethyluridine, mcm5U-5-methoxycarbonylmethyluridine, cm5s2U-5-carboxymethyl-2-thiouridine, mcm5s2U-5-methoxycarbonylmethyl-2-thiouridine, t6A-9-beta-D-ribofuranosyl-[N(purin-6-yl)carbamoyl]-1-threonine, C-cytidine, acp3u-3-(3-amino-3-carboxypropyl)uridine, AICR-aminoimidazole carboxamide riboside, alpha-4-PCNR & beta-4-PCNR-9-alpha-D-(or beta-D)-ribofuranosyl-pyridin-4-one-3-carboxamide, H x 7R-7-beta-D-ribofuranosyl hypoxanthine, m3U-3-methyluridine, m1I-1-methylinosine, m1G-1-methylguanosine, DI-5'-deoxyinosine, dms5OA-5'-deoxy-5'-methylthioadenosine sulfoxide, m2(2)G-N2-dimethylguanosine, psi-psi-uridine, A-adenosine, I-inosine, CML-chronic myelogenous leukemia mam5s2U-5-methylaminomethyl-2-thiouridine, ncm5U-5-carbamoylmethyluridine, ncm5s2U-5-carbamoylmethyl-2-thiouridine, UV-ultraviolet, NMR-nuclear magnetic resonance, HPLC-high performance liquid chromatography, GC-MS-gas chromatography-mass spectrometry.  相似文献   

20.
An analysis of the kinds and amounts of minor nucleosides of transfer ribonucleic acids (tRNA's) from Bacillus subtilis 168 trpC2 is presented. Identification and quantitation were accomplished using ion exclusion chromatography, thin-layer and paper chromatography, and ultraviolet absorption properties. Nucleosides and their amount in moles per 80 residues are as follows: guanosine (25.7), cytidine (22.0), adenosine (15.2), uridine (13.1), 5-methyluridine (0.98), pseudouridine (1.54), 1-methyladenosine (0.15), N6-methyladenosine (0.01), 7-methyladenosine (0.10), 2-methyladenosine (0.03), 7-methylguanosine (0.20), N2-methylguanosine (0.14), 1-methylguanosine (0.14), a methylated pyrimidine (0.17), a methylated derivative of N6-(delta 2-isopentenyl)adenosine (0.02), ribose methylated nucleosides (0.02), 4-thiouridine (0.12), 2-thio-5-(N-methylaminomethyl) (0.09), and an unknown thionucleoside (0.12). Although the composition is similar to that of Escherichia coli in the proportion of major nucleosides, the content of pseudouridine and 5-methyluridine, and the degree of base and ribose methylation, the composition is more similar to that of the tRNA's of yeast and higher organisms in its lower degree of thiolation, the presence of significant amounts of 1-methyladenosine, and the low levels of 2-methyladenosine and 6-methyladenosine. Therefore, the nucleoside composition of B. subtilis presents some different aspects from those usually given as characteristic for bacterial tRNA's. It is not known whether these differences are due to variation between bacterial species in general or related to the process of differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号