首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a vineyard having three varieties of grape (Merlot, Trebbiano and Garganega) differently colonized by two phytoseiid species,Typhlodromus pyri Scheuten andAmblyseius andersoni (Chant), the dynamics of mite populations were monitored over 5 years (1989–1993) in order to study their colonization, interspecific competition and the control of spider mites, i.e.Panonychus ulmi (Koch). These aspects were also investigated by releasingT. pyri, A. andersoni andAmblyseius aberrans (Oudemans) on some of the above varieties. In most of the experimental years (1989–1992), selective pesticides were used in order to allow a successful release of phytoseiids, in particularA. aberrans. The use of non-selective insecticides was re-established during 1993 in order to test its effect on the new mite communities originating from 1989 onwards. In the first years of the experiments an apparent relationship between grape variety and phytoseiid species was observed: in the control plots,A. andersoni occurred on Merlot whereT. pyri was rare, while the latter species was largely dominant overA. andersoni on Trebbiano and Garganega.Panonychus ulmi populations reached moderate levels only on Merlot and in the first part of experiments. The variety-phytoseiid species relationship was temporary as, at the end of experiments,T. pyri was completely dominant on all varieties. This new situation started when prey occurrence and interspecific competition decreased in importance. The moderate success of theT. pyri release on Merlot contrasts with the results of previous experiments. Two factors could be involved in this phenomenon: low interspecific competition by phytoseiids and predation by macropredators.Amblyseius aberrans was able to displaceA. andersoni andT. pyri on grape varieties where the two species were more abundant and reached higher population densities on varieties with pubescent leaf undersurfaces. In the first experimental year, spider mite densities were reduced more effectively inA. aberrans release plots than in the control or inT. pyri release plots. One year later,P. ulmi reached lower levels in the release treatments than in the control.Typhlodromus pyri andA. aberrans persisted in conditions of prey scarcity. The high competitivity ofA. aberrans over the remaining two phytoseiid species constitutes a major factor in selecting predatory species for inoculative releases in vineyards.  相似文献   

2.
Laboratory experiments were conducted to determine the potential impact of the phytoseiid Euseius finlandicus, the mirid Blepharidopterus angulatus and the anthocorid Orius majusculus on the Typhlodromus pyri/Panonychus ulmi predator/prey relationship on apple. Euseius finlandicus consumed more immature spider mites than did T. pyri. When both phytoseiids were present and spider mite prey was abundant, there was no evidence of a negative interaction between the predators. In experiments where each predatory mite was confined with large numbers of the other predator, interspecific predation was exhibited by adults of each species on immatures of the other, but more so by E. finlandicus. In the predatory insect/phytoseiid experiments, when confined with spider mites and large numbers of T. pyri, both B. angulatus and O. majusculus consumed some T. pyri, but spider mites were the preferred prey. In experiments with B. angulatus, O. majusculus and T. pyri feeding on P. ulmi, there was no evidence of negative interactions between the predatory insects and T. pyri.  相似文献   

3.
The most important biocontrol agents of phytophagous mites (mainly Tetranychidae) in European apple orchards are the predatory mites Amblyseius andersoni, Typhlodromus pyri and Euseius finlandicus (Phytoseiidae). A similar situation is found in Trentino (north-eastern Italy), an important apple production area in Europe. Another phytoseiid mite, Kampimodromus aberrans, can be dominant in neglected fruit orchards but is rare in commercial orchards because of its susceptibility to pesticides. However, pesticide resistant strains of K. aberrans have recently been found in vineyards. In the late 1990s, one of these resistant strains was successfully released on an experimental farm in Trentino. Kampimodromus aberrans spread to an apple orchard, despite the fact that it was colonized by T. pyri, A. andersoni and E. finlandicus, and became the dominant species. Since K. aberrans’ colonization appeared to be affected by apple cultivars, experiments were conducted on potted plants of three selected apple cultivars (Golden Delicious, Red Chief, Reinette du Canada). The results stressed the effect of cultivars on apple colonization by K. aberrans and suggested the role of leaf morphology in influencing this phenomenon. Field releases of K. aberrans were successfully performed in four commercial apple orchards. The incidence of K. aberrans in the total phytoseiid population increased over time and the predator became dominant in the season following its release in two orchards. Kampimodromus aberrans persists in these orchards as the dominant species. The adaptation of K. aberrans to varying environmental conditions, its tolerance to pesticides, and its competitiveness towards other phytoseiid species suggest a potential role of this species in the biological control of phytophagous mites in European apple orchards. Handling editor: Eric Lucas.  相似文献   

4.
Herbicide strips are used in apple orchards to promote tree growth and survival, to increase yield and to reduce the risk of rodent damage to tree bark. However, herbicide strips, particularly wider ones, may cause problems including soil erosion, reduced organic matter, leaching of nitrates into ground water and increased incidence of plant diseases and pests, including two-spotted spider mites, Tetranychus urticae Koch. In this 2 year study we monitored mite dynamics in apple trees and used sticky bands on tree trunks to determine rates of T. urticae immigration into Nova Spy apple trees in plots with wide (2 m) or narrow (0.5 m) herbicide strips. Use of wider herbicide strips promoted two risk factors that could trigger outbreaks of tetranychid mites. First, concentrations of leaf N in apple trees were higher and those of P and K were lower with the wide strips. Such changes in nutritional quality of leaves would increase the potential for more rapid population growth of T. urticae, and to a lesser extent, the European red mite, Panonychus ulmi (Koch). Second, there were higher rates of T. urticae immigration from the ground cover vegetation into the trees. In 2006, and for most of 2007, densities of T. urticae were higher with wide herbicide strips, whereas densities of P. ulmi were not enhanced. However, by late August to early September in 2007, densities of both tetranychids were lower with wide herbicide strips. This is because both risk factors were counterbalanced, and eventually negated, by the enhanced action of phytoseiid predators, mostly Typhlodromus pyri Scheuten. From July through September 2006, ratios of phytoseiids to tetranychids were always several-fold lower with wide herbicide strips but in 2007, from mid-July onwards, predator–prey ratios were usually several-fold higher with wide strips. However, this numerical response of phytoseiids to prey density can only occur where the pesticide program in orchards is not too harsh on phytoseiids. Hence the impact of width of herbicide strip is contingent on the composition and size of the phytoseiid complex and the impact of pesticides on predation.  相似文献   

5.
The differential impact of Zetzellia mali on the phytoseiids Metaseiulus occidentalis and Typhlodromus pyri was studied in the laboratory and by analysis of population from orchard plots that contained either phytoseiid, similar numbers of prey mites and high or low densities of Z. mali. Five hypotheses were evaluated to explain why Z. mali had more impact on M. occidentalis in the field than on T. pyri. Given equal opportunity, Z. mali adult females did not consume more M. occidentalis eggs than T. pyri eggs nor did adult females of either phytoseiid inflict greater mortality on Z. mali eggs or larvae through attack or consumption. There was no difference in the within-tree association of Z. mali adult females with eggs of either phytoseiid species nor were there differences in the way prey mites (all life stages) were spatially partitioned between adult female Z. mali as compared with adults and deutonymphs (combined) of either phytoseiid. The foraging area of adult female Z. mali and the oviposition locations of the two phytoseiids from both field and laboratory data were compared using spatial statistics. Metaseiulus occidentalis laid significantly more eggs in the primary foraging area of adult female Z. mali than T. pyri. This was the only factor identified which may explain the greater impact of Z. mali on M. occidentalis. The impact of these interspecific effects on the persistence of predatory mite guilds and biological control are discussed.  相似文献   

6.
Plants with leaves having numerous trichomes or domatia frequently harbor greater numbers of phytoseiid mites than do plant with leaves that lack these structures. We tested the hypothesis that this pattern occurs, in part, with Typhlodromus pyri because trichomes increase the capture of pollen or fungal spores that serve as alternative food. Using a common garden orchard, we found that apple varieties with trichome-rich leaves had 2–3 times more pollen and fungal spores compared to varieties with trichome-sparse leaves. We also studied the effects of leaf trichome density and pollen augmentation on T. pyri abundance to test the hypothesis that leaf trichomes mediate pollen and fungal spore capture and retention and thereby influence phytoseiid numbers. Cattail pollen (Typha sp.) was applied weekly to mature ‘McIntosh’ and ‘Red Delicious’ trees grown in an orchard and, in a separate experiment, to potted trees of the same varieties. ‘McIntosh’ trees have leaves with many trichomes whereas leaves on the ‘Red Delicious’ trees have roughly half as many trichomes. With both field-grown and potted trees, adding cattail pollen to ‘Red Delicious’ trees increased T. pyri numbers compared to ‘Red Delicious’ trees without pollen augmentation. In contrast, cattail pollen augmentation had no effect on T. pyri populations on ‘McIntosh’ trees. Augmentation with cattail pollen most likely supplemented a lower supply of naturally available alternative food on ‘Red Delicous’ leaves and thereby enhanced predator abundance. These studies indicate that larger populations of T. pyri on pubescent plants are due, in part, to the increased capture and retention of pollen and fungal spores that serve as alternative foods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
We sampled mites in three apple orchards in Nova Scotia, Canada, that had been inoculated with pyrethroid-resistant Typhlodromus pyri and had a history of Tetranychus urticae outbreaks. The objective of this study was to monitor populations of T. urticae and phytoseiid predators on the ground and in trees and to track dispersal between the two habitats. Pesticides were the chief cause of differences in mite dynamics between orchards. In two orchards, application of favourably selective acaricides (abamectin, clofentezine) in 2002, coupled with predation by T. pyri in trees and Neoseiulus fallacis in ground cover, decreased high T. urticae counts and suppressed Panonychus ulmi. By 2003 phytoseiids kept the tetranychids at low levels. In a third orchard, application of pyrethroids (cypermethrin, lambda-cyhalothrin), plus an unfavourably selective acaricide (pyridaben) in 2003, suppressed phytoseiids, allowing exponential increases of T. urticae in the ground cover and in tree canopies. By 2004 however, increasing numbers of T. pyri and application of clofentezine strongly reduced densities of T. urticae in tree canopies despite high numbers crawling up from the ground cover. Another influence on T. urticae dynamics was the distribution of the phytoseiids, T. pyri and N. fallacis. When harsh pesticides were avoided, T. pyri were numerous in tree canopies. Conversely, only a few N. fallacis were found there, even when they were present in the ground cover and on tree trunks. Low numbers were sometimes due to pyrethroid applications or to scarcity of prey. Another factor was likely the abundance of T. pyri, which not only competes with N. fallacis, but also feeds on its larvae and nymphs. The scarcity of a specialist predator of spider mites in trees means that control of T. urticae largely depends on T. pyri, a generalist predator that is not particularly effective in regulating T. urticae. The Canadian Crown's right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

9.
During an experiment carried out in 2009–2010 we observed different population densities of Typhlodromus pyri in three monitored pear cultivars in Organic Pest Management (OPM) as well as Integrated Pest Management (IPM) orchards. In both years the population density of T. pyri was the highest in the cultivar Conference (organic orchard). The lowest population density was found in 2009 on the cultivar Dicolor (IPM orchard) and in 2010 on the cultivar Bohemica. Factors involved are discussed.  相似文献   

10.
Typhlodromus pyri, reared on plate cultures and fed on pollen of Vicia faba, were bioassayed using a taped-slide technique. Mite stocks from isolated unsprayed orchards were used to establish base-line susceptibility to azinphos-methyl, parathion, carbaryl and permethrin. Stocks from English orchards with a spray history of organophosphates and carbaryl showed resistance of 4 to 6x to azinphos-methyl, c 50 x to parathion, >20x to carbaryl, and no resistance to permethrin. An orchard population derived from T. pyri imported from New Zealand in 1977 responded similarly. In other tests, mites exposed to spray residues on glass and on apple leaves were killed by lower concentrations than in taped-slide tests (glass < apple leaf < taped-slide technique); but for all three assay techniques the resistance factors to azinophos-methyl and carbaryl, comparing two stocks, were similar. All stocks from sprayed orchards were resistant to both azinphos-methyl and carbaryl, suggesting cross-resistance; and resistance to both these pesticides appeared to be stable in the field when selection pressure was relaxed. The results are discussed in relation to earlier work on T. pyri and two other resistant orchard-inhabiting phytoseiid species.  相似文献   

11.
Laboratory evaluations of five natural enemies of the silverleaf whitefly, Bemisia argentifolii Bellows and Perring, n. sp., were conducted to determine their potential as biological control agents in greenhouse poinsettia ranges. Adult longevity, prey consumption or host feeding and parasitism rates, and parasitoid emergence were measured for one predator, Delphastus pusillus LeConte, and four parasitoids, Encarsia formosa Gahan, Encarsia luteola Howard, Encarsia pergandiella Howard, and Encarsia transvena (Timberlake), as possible indicators of efficacy. Characterization of each parameter was performed on two poinsettia cultivars: the first, ′Annette Hegg Brilliant Diamond,′ has trichome densities on the leaf undersurfaces approximately 15% less than the trichome densities on the leaf undersurfaces of the second cultivar, ′Lilo.′ Adult longevity varied significantly between natural enemies (ranging from an average high of 85.2 days for female D. pusillus feeding on B. argentifolii nymphs to an average low of 2.8 days for the Canada colony of E. formosa), but not between cultivar. Prey consumption and oviposition by D. pusillus varied between prey type (nymphs consumed > eggs consumed) and poinsettia cultivar (′Annette Hegg Brilliant Diamond′ > ′Lilo′). Host feeding, parasitism and total number of B. argentifolii nymphs killed varied significantly among Encarsia spp., but no single wasp performed better than the rest across all three parameters. Host feeding, parasitism, and total number of nymphs killed were greater on ′Annette Hegg Brilliant Diamond′ than on ′Lilo′ and this difference was consistent among the four parasitoid species. Among parasitoid species differences in percentage emergence were consistent between the two poinsettia cultivars with emergence from parasitized nymphs on ′Lilo′ being greater than emergence on ′Annette Hegg Brilliant Diamond.′ Results from these evaluations suggest that the probability of achieving successful augmentative biological central will be greater on poinsettia cultivars with fewer trichomes. In addition, achieving biological control is likely to be difficult with releases of E. transvena, but a greater chance for success may be possible through releases of D. pusillus when whitefly densities are high or through releases of E. formosa (Beltsville colony) or mated E. pergandiella independent of whitefly densities.  相似文献   

12.
It is well known that plant-inhabiting predators use herbivore-induced plant volatiles to locate herbivores being their prey. Much less known, however, is the phenomenon that genotypes of the same host plant species vary in the attractiveness of these induced chemical signals, whereas they also differ in characteristics that affect the predator’s foraging success, such as leaf pubescence. In a series of two-choice experiments (using a Y-tube olfactometer) we determined the preference of Typhlodromalus aripo for pubescent versus glabrous cassava cultivars infested with the cassava green mite Mononychellus tanajoa and also the preference for cultivars within each of the two groups. We found that when offered a choice between pubescent and glabrous cassava cultivars (either apex or leaves), T. aripo was significantly more attracted to pubescent cultivars. For each cultivar, M. tanajoa infested leaves and apices were equally attractive to T. aripo. There was however some variation in the response of T. aripo to M. tanajoa-infested plant parts within the group of pubescent cultivars, as well as within the group of glabrous cultivars. Our study confirms not only that T. aripo uses herbivore-induced plant volatiles to search for prey in cassava fields, but it also shows that it can discriminate between glabrous and pubescent cultivars and prefers the latter. This knowledge can be useful in selecting cultivars that are attractive and suitable to T. aripo, which, in turn, may promote biological control of the cassava green mite.  相似文献   

13.
Summary Prey-selection behaviour of the phytoseiid mite Typhlodromus pyri Scheuten was analysed with a Markovtype model of feeding-state dynamics and feeding-state dependent searching behaviour (Sabelis 1981, 1986, 1989; Metz and Van Batenburg 1985a, b). All behavioural characteristics of the predator which are independent of the feeding state were represented by one parameter. The remaining feeding-state dependent characteristics were represented by a function of the feeding state, with one parameter. The best parameter values to describe a predator-prey interaction were determined by fitting the model to the predation rates in monocultures. Under the assumption that the parameter values are not dependent on the composition of prey species supply, the diet of the predators in mixed cultures was predicted from parameters estimated in monoculture experiments.Two prey types, apple rust mite (Aculus schlechtendali (Nalepa)) adults and European red spider mite (Panonychus ulmi (Koch)) larvae were studied. A large discrepancy was observed between calculated and experimentally determined predation rates of T. pyri in mixed cultures: the predators actually killed 3–7 times more P. ulmi larvae than was predicted by the model.The large difference between observed and predicted predation rates in mixed cultures cannot be explained by changes in the behaviour of the prey species as a result of being together. Therefore, it seems likely that the prey selection behaviour of the predator was different when prey species were presented together than when presented singly. Apparently the predatory mite T. pyri prefers P. ulmi to S. schlechtendali.  相似文献   

14.
Leaf pubescence mediates intraguild predation between predatory mites   总被引:1,自引:0,他引:1  
Plant morphological traits such as leaf pubescence may affect herbivores and their natural enemies at the individual, population and community levels. Leaf pubescence has been repeatedly shown to mediate predator‐herbivore interactions whereas the influence of leaf pubescence on predator–predator interactions such as intraguild predation (IGP) has seldom been investigated. Using a three‐pronged approach we assessed the influence of leaf pubescence on the predatory mites Kampimodromus aberrans and Euseius finlandicus. Both predators occur on broad‐leaved trees in Europe. Euseius finlandicus is mostly found on trees with glabrous leaves whereas K. aberrans mainly occurs on trees with pubescent leaves. We hypothesized that leaf pubescence mediates IGP between K. aberrans and E. finlandicus and thereby determines their dominance and proportional abundance. A field survey on apple revealed that the abundance of K. aberrans and E. finlandicus is negatively correlated, with the former predominating on cultivars with strongly pubescent leaves and the latter predominating on cultivars with little pubescent or glabrous leaves. Microhabitat choice tests showed that K. aberrans preferentially resides on pubescent leaves whereas E. finlandicus preferentially resides on glabrous leaves. The effects of leaf pubescence on survival and development of immature IG predators and IG prey were reversed for K. aberrans and E. finlandicus. In the presence of the IG predator E. finlandicus, immature K. aberrans had higher survival probabilities on pubescent leaves than on glabrous ones. In contrast, the survival chances of immature E. finlandicus were higher on glabrous leaves than on pubescent ones when the IG predator K. aberrans was present. Artificial leaf pubescence enhanced IG prey capture by immature K. aberrans and prolonged their longevity but impaired IG prey capture by immature E. finlandicus and shortened their longevity. We conclude that leaf pubescence mediates IGP strength and symmetry and discuss the implications to natural and biological control.  相似文献   

15.
Predaceous arthropods are frequently more abundant on plants with leaves that are pubescent or bear domatia than on plants with glabrous leaves. We explored the hypothesis that for some predatory mites this is because pubescence affords protection from intraguild predation. In laboratory experiments, we tested whether apple leaf pubescence protected Typhlodromus pyri eggs from predation by western flower thrips, Frankliniella occidentalis. To investigate the effect of pubescence further, we added cotton fibers to trichome-free leaves. We also determined whether webbing produced by Tetranychus urticae protected Phytoseiulus persimilis eggs from predation by F. occidentalis. Predation by thrips on T. pyri eggs oviposited on field-collected pubescent "Erwin Bauer" apple leaves was significantly less than on glabrous "Crittenden" apple leaves. Phytoseiid eggs oviposited in the cotton fibers were preyed upon significantly less than those on the trichome-free bean disk. Increasing the cotton fiber density from 5 to 20 fibers only slightly further reduced predation by thrips on T. pyri eggs. Thrips fed upon significantly fewer P. persimilis eggs oviposited in Te. urticae webbing than eggs oviposited on a surface that differed only in the absence of Te. urticae web. We conclude that a complex leaf topography reduces intensity of intraguild predation in this system.  相似文献   

16.
Prey preference of three phytoseiid species,Typhlodromus pyri Scheuten,Amblyseius potentillae (Garman) andA. finlandicus (Oudemans) which occur in Dutch orchards, was analysed with respect to two economically important phytophagous mites, the European red spider mitePanonychus ulmi (Koch), and the apple rust miteAculus schlechtendali (Nalepa). Two types of laboratory experiments were carried out: (1) olfactometer tests to study the response when volatile kairomones of both prey species were offered simultaneously; and (2) predation tests in mixtures of the two prey species and comparison with calculated predation rates, using a model provided with parameters estimated from experiments with each prey species alone. In addition, the diet of field-collected predators was analysed using electrophoresis. For each predator species the results of the different tests were consistent, in thatT. pyri andA. potentillae preferredP. ulmi overA. schlechtendali, whereasA. finlandicus preferredA. schlechtendali overP. ulmi.  相似文献   

17.
This study deals with the long-term effect of agroforestry management (trees within vine crops) on communities of phytoseiid mites. Several plots were considered: vineyards co-planted with Sorbus domestica or Pinus pinea, monocultures of vines and monocultures of S. domestica or P. pinea. All vine plots included two vine cultivars, Syrah and Grenache. Phytoseiid mites have been surveyed in these plots during several years within the previous 10 years. In 2010, samplings were again carried out in these same plots, from May to September, twice a month. Significantly higher densities of Phytoseiidae were observed on the cultivar Syrah (0.85 phytoseiids per leaf) than on Grenache (0.26 phytoseiids per leaf). Furthermore, significantly higher phytoseiid mite densities were observed in the monocultural grapevine plot than in the two co-planted ones. The main species found was Typhlodromus (Typhlodromus) exhilaratus in all vine plots considered. However, Kampimodromus aberrans was observed in the grapevine plots co-planted with the two trees, but never in the monocultural vine plot. Surprisingly, this phytoseiid species was not found on the co-planted trees, nor in the neighbouring uncultivated vegetation. Several hypotheses are discussed to explain such an unexpected distribution. Furthermore, contrary to what has been observed previously, agroforestry management did not seem to favour phytoseiid mite development, especially on the Grenache cultivar. Again, some hypotheses are developed to explain such observations and density modifications.  相似文献   

18.
Metaseiulus occidentalis (Nesbitt) andTyphlodromus pyri Scheuten have complementary features/ traits that enable them to control effectively plant-feeding mites on apple. Populations of both predators gave as good or better biological control of the apple rust mite (Aculus schlechtendali Nalepa), European red mite (Panonychus ulmi Koch) and two-spotted spider mite (Tetranychus urticae (Koch)) than single-predator populations. With mixed predators,M. occidentalis provided better control of spider mites the first season after release, butT. pyri gave better control in the second season. Several factors affected the ability of predators to provide biological control: When prey were dense,M. occidentalis rapidly increased during the warm mid-summer, whileT. pyri provided greater predation when it was cool at the start or end of the growing season. When few prey were present, searching byM. occidentalis was more confined on individual apple leaves, but it migrated between leaves and trees more often. Pollen feeding, cannibalism and interspecific predation were more common byT. pyri. In fall, oviposition byM. occidentalis stopped sooner and in the following spring,T. pyri reproduced beforeM. occidentalis. Research needs and management of mixed-predator populations are discussed.  相似文献   

19.
Non-glandular leaf trichomes positively influence the abundance of many phytoseiid mites. We characterized the influence of grape leaf trichomes (domatia, hairs, and bristles) on Typhlodromus pyri Scheuten abundance over two years in a common garden planting of many grape varieties and 2 years of sampling in a commercial vineyard. In general, a lack of trichomes was associated with much lower predator numbers and in the case of Dechaunac, a cultivar with almost no trichomes, very few T. pyri were found. Phytoseiid abundance was best predicted by a model where domatia and hair had an additive effect (r (2) = 0.815). Over two years of sampling at a commercial vineyard there were T. pyri present on all of the 5 cultivars except Dechaunac. At the same time, European red mite prey were present on Dechaunac alone. These results suggest that on grape cultivars lacking leaf trichomes, T. pyri likely will not attain sufficient densities to provide biological control of European red mite, despite presence of the mite food source. The relationship between leaf trichomes and phytoseiid abundance that is observed at the scale of single vines in a garden planting appears to also be manifest at the scale of a commercial vineyard. Because persistence of predatory mites in or nearby the habitats of prey mites is important for effective mite biological control, leaf trichomes, through their influence on phytoseiid persistence, may be critical for successful mite biological control in some systems.  相似文献   

20.
The prey selection of the phytoseiid miteTyphlodromus pyri Scheuten was studied by using polyacrylamide gel electrophoresis to analyse the diet of field-collected predators. The predators were obtained from an orchard where the phytophagous prey mitesPanonychus ulmi (Koch) andAculus schlechtendali (Nalepa) were present in various density ratios.Esterases of both prey species were identified in the predators, but on all sampling datesP. ulmi esterases were discovered much more frequently than those ofA. schlechtendali. The data show thatT. pyri hardly fed onA. schlechtendali over a range of prey density ratios. It is therefore concluded thatT. pyri prefersP. ulmi toA. schlechtendali.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号