首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parapoynx stagnalis (Zeller) (=Nymphula depunctalis (Guenée), is a sporadic rice paddy pest of south and southeast Asian rice paddy fields, and widely known as rice caseworm. A recent outbreak of the pest was observed in the upland rice paddy agro-ecosystem of the central Western Ghats, India. No potential natural enemies of this pest have so far been reported, mainly due to the semi-aquatic behavior of the larvae and pupae. However, an undescribed aquatic ichneumonid wasp species (belonging to a genus near Litochila) is reported as a potentially useful early stage pupal parasitoid of this pest in our study. The host searching behavior and potential of the parasitoid wasp was studied in detail using both field and laboratory experiments. The adult female wasps usually dive into the water in search of the host pupae, remaining under water for a maximum of 90.2s, while searching for rice caseworm pupae. In field and laboratory experiments, we found 73% of the parasitized pupae of P. stagnalis kept under water yielded adult parasitic wasps. However, no parasitoids emerged from parasitized host pupae maintained in dry terrariums. Sex ratio was 2.8:1. The present discovery of the semi-aquatic parasitoid wasp could aid in better management of the rice caseworm population in rice paddy fields.  相似文献   

2.
Alternative environmentally friendly methods for pest control are in high demand because of the environmental impacts of pesticides. Notably, predator-released kairomone is a natural compound released by natural enemies, which mediates non-consumptive effects between natural enemies and prey. However, this novel pest control agent is underutilized relative to pesticides and natural enemies. Additionally, the effects of spraying predator kairomone on the number and diversity of arthropods in fields and whether this method is environmental-friendly are poorly understood. In the present study, a predator kairomone, rove beetle (Paederus fuscipes Curtis) abdominal gland secretion (AGS), was sprayed in rice fields to investigate whether AGS can suppress pest populations or will affect the fields’ arthropod communities. After AGS spraying, the abundance of arthropods decreased throughout the first 12-d period, including arthropod pests such as hemipterans (small brown planthopper, Laodelphax striatellus (Fallén), brown planthopper, Nilaparvata lugens (Stål), white-backed planthopper, Sogatella furcifera (Horváth), and leafhoppers), and lepidopterans (rice leaf folder, Cnaphalocrocis medinalis Guenée). The abundance of arthropod predators was not affected, except for predatory spiders, which decreased, and rove beetles (P. fuscipes), which increased. In the terms of arthropod diversity, neither pests nor their natural enemies were changed by AGS application. This work highlights that predator kairomone can temporarily suppress pest populations in fields but has no adverse effects on arthropod diversity; thus, this approach is environmentally friendly and can be used in real-world applications. Broadly, present studies suggest that the application of predator kairomone may have synergistic or cumulative effects on pest suppression.  相似文献   

3.
Nitrogen is a critical factor for plant development and nitrogen input is one of the important tactics to enhance the development and yield of crops. Nevertheless, nitrogen input could influence the occurrence of insects positively or negatively. Nitrogen is also one of the main elements composing the insecticidal crystal (Cry) protein. Cry protein production could affect nitrogen partitioning in Bt plants and as such nitrogen input may influence insect pest management in transgenic Bt rice, Oryza sativa L. (Poaceae). To test this possibility, we evaluated the impacts of nitrogen regimes on the main insect pests and their predators on two Bt rice lines, T2A‐1 and T1C‐19, expressing Cry2A and Cry1C, respectively, and their non‐transgenic parental counterpart MH63. The results showed that Cry proteins with different nitrogen regimes have enough insecticidal activity on rice leaffolder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Crambidae), in both laboratory and field experiments. Laboratory studies indicated that relevant parameters of ecological fitness in brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a non‐target insect pest, were significantly affected by nitrogen input both on Bt and MH63 rice lines. Nymphal survival, female adult longevity, and egg hatchability in N. lugens differed significantly among rice varieties. The experiments conducted in rice fields also demonstrated that nitrogen was positively correlated with the abundance of N. lugens on Bt rice, similar to that on MH63 rice. The abundances of two predators – the wolf spider Pirata subpiraticus (Boesenberg & Strand) (Araneae: Lycosidae) and the bug Cyrthorhinus lividipennis Reuter (Hemiptera: Miridae) – were significantly affected by rice growth stages but not by nitrogen input and rice varieties. In conclusion, the above results indicate that high nitrogen regimes for Bt rice (T2A‐1 and T1C‐19) and non‐Bt rice (MH63) cannot facilitate the management of insect pests.  相似文献   

4.
In the 1996-97 dry season, a rice caseworm (Nymphula depunctalis (Guenee)) outbreak occurred at the Co Do rice-fish experimental station, Can Tho province, Mekong Delta, Vietnam. A polyculture of Thai silver barb, common carp and Nile tilapia was able to reduce the number of rice caseworm larvae (P< 0.001) by at least 93%. As a result, the number of rice caseworm adults (P< 0.001) and the percentage of damaged rice leaves (P< 0.001) were also reduced compared with rice fields without introduced fish. As the pest reduction did not differ in fields with high and low seeding densities, it was concluded that the access of fish into the rice field was not severely hampered by high rice seeding densities. The presence of fish or rice caseworms had no effect on the rice yield. The broader acceptance of rice-fish culture could lead to a reduction of the number of pesticide sprays used against highly visible defoliators like the rice caseworm. This would enforce the concept that rice-fish culture and integrated pest management are complementary.  相似文献   

5.
  • 1 The rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) is a serious rice pest in Asia. The conspicuous foliar damage caused by C. medinalis larvae leads to early‐season insecticide applications that disrupt the biological control of this and other pest species.
  • 2 Despite the often dramatic impact of C. medinalis, rice plants can tolerate severe defoliation with no impact on grain yield, although persuading farmers to withhold insecticide application has proven very difficult.
  • 3 The present review assesses the prevention of damage caused by C. medinalis via biological control using parasitoids. Information on the indigenous parasitoids of C. medinalis is drawn together for the first time from the non‐English literature published in Asia. This is integrated with the wider English language literature to provide a comprehensive analysis of the parasitoid fauna.
  • 4 Survey studies have been conducted in many Asian countries in recent decades, showing that parasitoids of rice pests can achieve high rates of parasitism but are far from consistent as a mortality factor. There is much less work available on the biology of leaffolder parasitoids in rice and there is an unexpected dearth of studies regarding increasing their performance by providing nectar sources, which is a widely explored approach for other crop systems.
  • 5 It is concluded that the recently reported work in which nectar plants are established on rice bunds to support planthopper parasitoids may have significant benefit for leaffolder parasitoids. The use of plant species, however, that are selective in not allowing adult moths to feed will be essential.
  相似文献   

6.
China has a long history of rice cultivation, incorporating several cultural practices known to influence damage by insect pests. Transgenic Bt rice expresses lepidopteran‐specific insecticidal proteins that primarily target lepidopteran insect pests. However, the effectiveness of Bt rice against target insect pests under different cultural regimes has not been evaluated. In this study, the effectiveness of Bt rice lines against rice leaffolder, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae), and striped stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae), was evaluated under various transplanting densities, crop establishment methods, and planting times. The results showed that Bt rice lines (T2A‐1 and T1C‐19, containing Cry2A and Cry1C, respectively) could prevent damage by these target pests under a range of cultural practices. Injury by C. medinalis or C. suppressalis on rice did not differ with the rice lines under various transplanting densities. Direct‐seeded non‐Bt rice MH63 suffered heavier injury by C. medinalis and C. suppressalis than it did with transplanting, whereas injury to the two Bt rice lines did not differ with planting methods. Planting time significantly affected injury by C. medinalis or C. suppressalis on non‐Bt rice, whereas injury to Bt rice lines did not differ with planting time. These results suggest that transplanting density, planting method, and planting time did not significantly affect the resistance of two Bt rice lines, due to their high insecticidal activity against target insects.  相似文献   

7.
Concerns about the negative effects of chemical control of oilseed rape (Brassica napus L.) pests on non-target species, human safety, and development of insecticide resistance, require alternative control strategies such as the use of trap crops and biocontrol to be developed. Psylliodes chrysocephala(L.) (Coleoptera: Chrysomelidae) (cabbage stem flea beetle) and Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) (cabbage stem weevil) are two major stem-mining pests of oilseed rape. This study investigated the phenology of these pests and their main parasitoids in the UK, the potential use of turnip rape (Brassica rapa L.) as a trap crop to reduce oilseed rape infestation, and the effects of insecticide treatment on pest incidence and larval parasitism. Water trap samples, plant dissections and pest larval dissections were done to determine: the incidence of adult pests and their parasitoids, the level of plant infestation by the pests and percentage larval parasitism, respectively. The turnip rape trap crop borders reduced P. chrysocephalabut not C. pallidactylus infestation of oilseed rape plots. Treatment of the trap crop with insecticide had little effect on either pest or parasitoid incidence in the oilseed rape. TersilochusmicrogasterSzép. andT. obscurator Aub. (Hymenoptera: Ichneumonidae) were the main larval parasitoids of P. chrysocephalaand C. pallidactylus, respectively. Tersilochus microgasteris reported for the first time in the UK. The implications for integrated pest management are discussed.  相似文献   

8.
Understanding the effect of cropping patterns on population dynamics, dispersal, and habitat selection of insect pests has been an unresolved challenge. Here, we studied the western tarnished plant bug, Lygus hesperus (Knight) (Heteroptera: Miridae), in cotton during early summer in central Arizona. We used a general approach based on global positioning system (GPS) and geographic information system (GIS) technologies combined with spatial statistics to assess the maximum distance at which forage and seed alfalfa, fallow fields with weeds, and cotton affect L. hesperus population density. Using a set of 50 cotton fields as focal fields, we found that forage and seed alfalfa as well as weeds acted as L. hesperus sources for these cotton fields. The source effect did not extend beyond 375, 500, and 1500 m for forage alfalfa, weeds, and seed alfalfa, respectively. Conversely, cotton fields acted as L. hesperus sinks, but this effect did not extend further than 750 m from the focal cotton fields. These findings suggest that specific spatial arrangements of these field types could reduce L. hesperus damage to cotton. The spatially explicit approach used here provides a direct evaluation of the effects of agroecosystem heterogeneity on pest population dynamics, dispersal, and habitat selection, which is a significant asset for the development and improvement of areawide pest management.  相似文献   

9.
The red-striped soft scale Pulvinaria tenuivalvata (Newstead) (Hemiptera: Coccidae) is a pest attacking sugarcane (Saccharum officinarum L.) recently recorded in Upper Egypt governorates. Sugarcane plantations in Upper Egypt were thoroughly inspected for 2 years from January 2001 until December 2002 to record infestation with P. tenuivalvata and its population density. Also, crops, plants and weeds growing near sugarcane fields were examined to determine the host range of this pest. A pest species of soft scale insect has become increasingly dangerous on sugarcane in Egypt. The insect occurrence was from 3?–?8 months on the infested hosts. The red-striped soft scale was active from May until December. Sugarcane, Cogon grass and Deccan grass were the hosts, which harboured all insect stages. The infestation was restricted on the lower surface of the leaves and lower numbers were found on the upper surface. Damage to sugarcane including withering of the leaves and reduced yield, with reduction in the sucrose content of the juice. The growth rate of pest population infesting the sugarcane plants in season 2001, increased gradually during the period from June to September and decreased from October to December. The same trend was found for the growth rate of population in season 2002. At the high growth rate it is advisable to use chemical control. The effect of weather factors on the population density of the P. tenuivalvata (the correlation between the total number of pests and temperature or RH.) were positive to both seasons. Many predators and parasites were collected, identified and counted.  相似文献   

10.
Abstract

Rice is an important staple crop whose production is limited by array of insect pests and diseases. African rice gall midge (AfRGM) Orseolia oryzivora Harris & Gagné (Diptera: Cecidomyiidae) is a major insect pest of lowland rice ecology in Africa. Heavy yield losses have been recorded in many farmers’ rice fields. Use of synthetic insecticides has fostered environmental and human health concern that initiates a search for alternative control measures such as Entomopathogenic fungi (EPF) – Beauveria bassiana and Metarhizium anisopliae. The experiment was laid out on completely randomised design (CRD) with three replications. The study showed M. anisopliae IC30 had the greatest control effect on adult AfRGM with 90.58% of non-infested tillers. The percentage of non-infested tiller advantage over the control followed the same trend with M. anisopliae IC30 having the greatest value of 50.72%. Tiller infestation had significant negative correlation with chlorophyll content, leaf breadth and grain number.  相似文献   

11.
Rice (Oryza sativa) is an important staple food crop for majority of human population in the world in general and in Asia in particular. However, among various pests and diseases which constitute important constraints in the successful crop production, plant parasitic nematodes play an important role and account for yield losses to the extent of 90%. The major nematode pests associated with rice are Ditylenchus angustus, Aphelenchoides besseyi, Hirschmanniella spp., Heterodera oryzicola and Meloidogyne graminicola. However, rice root-knot nematode (M. graminicola) happens to be the most important pest and is prevalent in major rice producing countries of the world. In India, the distribution of M. graminicola in rice growing areas of different states has been documented in nematode distribution atlas prepared by All India Coordinated Research Project (Nematodes) and published by Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research, New Delhi, India during 2010. M. graminicola affected rice plants show stunting and chlorosis due to the characteristic terminal swellings/galls on the roots which ultimately result in severe reduction in growth and yield. Number of eco-friendly management technologies against M. graminicola have been developed and demonstrated, including the use of bioagents for minimising the losses due to rice root-knot nematode. This review is focused on collating information to understand the current scenario of rice root-knot nematodes with greater emphasis on its ecological requirements, damage symptoms, biology, morphology, host range and management strategies.  相似文献   

12.
Neotyphodium fungal endophytes form mutualistic symbiotic associations with many grasses of the subfamily Pooideae, including important forage and turfgrass species. This relationship provides a competitive advantage to the host plant by increasing abiotic/biotic stress tolerance, such as its resistance to drought, diseases, and insect pests. The insect deterrent effects of endophytes are now receiving attention in Japan, as insect pests growing in meadows are causing problems in adjacent rice paddies. One of the most serious problems is the kernel spotting of rice grains caused by the rice leaf bug, Trigonotylus caelestialium Kirkaldy (Heteroptera: Miridae), which reproduces on Lolium species grown as forage. To determine the potential of Neotyphodium endophytes to reduce the invasion of rice crops by T. caelestialium from adjacent Lolium crops, we carried out choice and no‐choice feeding tests using endophyte‐infected and endophyte‐free clonal perennial ryegrass (Lolium perenne L.) (Poaceae). Our experiments revealed that the presence of the Neotyphodium endophyte strongly deterred the feeding of both first‐instar larvae and adults of T. caelestialium. These results show the potential of Neotyphodium endophytes to reduce the number of T. caelestialium in forage fields and grasslands, and thus to reduce the damage to rice grains caused by this insect pest.  相似文献   

13.
Studying the spatial pattern of insect pests and the temporal stability of their patterns is important in understanding underlying ecological mechanisms and in developing pest management programs in cultivated crop systems. To elucidate the spatio-temporal pattern of the black rice bug, Scotinophara lurida, in rice fields, samplings were conducted in two rice fields over 2 years. Using spatial analysis by distance indices, the spatial pattern of each developmental stage of S. lurida and their temporal stability of the spatial pattern were identified. Most of the I a (the index of aggregation) values for overwintered adults and eggs of S. lurda were close to 1, indicating random distribution pattern while nymphs and new adults mainly had I a values >1, indicating an aggregated distribution pattern. According to spatial association analysis between successive samples using X (the index of spatial association), the spatial pattern of S. lurida showed strong temporal stability throughout the season. Also, there was strong association between the spatial patterns of developmental stages, indicating the great effect of the spatial pattern of the previous developmental stage on that of later developmental stage. Factors influencing the spatial pattern and spatial stability of S. lurida are discussed.  相似文献   

14.
Wen  Jian  Ueno  Takatoshi 《BioControl》2021,66(6):813-824

Predator non-consumptive effects (NCEs) have been well studied in many ecosystems and NCEs can alter the behavior, morphology and life history of prey, producing strong trait-mediated indirect effects (TMIEs) on host plants. However, studies involving the application of NCEs to control pests in the field, and instances of combined laboratory bioassay and field practice are rare. Here, we examine the development, reproduction and behavior of small brown planthoppers, Laodelphax striatellus (Fallén), when exposed to predator cues from caged predators (Paederus fuscipes Curtis), or predator body extracts (in solvents with different polarities) in the laboratory. Field foliage sprays of these extracts were also used to test their effects on the L. striatellus population and rice plant biomass. Nymph development and egg hatch rate in L. striatellus were not influenced, but adult longevity was shorter, and fecundity and weight gain were lower, when nymphs were exposed to the predator cues. Adults exposed to predator cues also gained less weight and laid fewer eggs. The poorer developmental and reproductive performances might result from lower activity levels observed in threatened L. striatellus. The field foliage sprays of predator cues decreased L. striatellus abundance and increased rice plant biomass, suggesting their possible application for pest control. Predator cues extracted using chloroform increased stronger NCEs and TMIEs, indicating their non-polar characteristics. Our studies advance the understanding of how NCEs shape the life history and behavior of L. striatellus and improve rice growth, laying new foundations for future research on novel pest control materials and methods.

  相似文献   

15.
Soybean, Glycine max (L.) Merrill (Fabaceae), is an introduced crop to America and initially benefited from a small number of pests threatening its production. Since its rapid expansion in production beginning in the 1930s, several pests have been introduced from the native range of soybean. Our knowledge of how these pests interact and the implications for management is limited. We examined how three common economic soybean pests, the nematode Heterodera glycines Ichinohe (Nematoda: Heteroderidae), the fungus Cadophora gregata Harrington & McNew (Incertae sedis), and the aphid Aphis glycines Matsumura (Hemiptera: Aphididae), interact on soybean cyst nematode‐susceptible (SCN‐S) and soybean cyst nematode‐resistant cultivars carrying the PI 88788 resistance source (SCN‐R). From 2008 to 2010, six soybean cultivars were infested with either a single pest or all three pests in combination in a micro‐plot field experiment. Pest performance was measured in a ‘single pest’ treatment and compared with pest performance in the ‘multiple pest’ treatment, allowing us to measure the impact of SCN resistance and the presence of other soybean pests on each pest’s performance. Performance of H. glycines (80% reduction in reproduction) and A. glycines (19.8% reduction in plant exposure) was reduced on SCN‐R cultivars. Regardless of cultivar, the presence of multiple pests significantly decreased the performance of A. glycines, but significantly increased H. glycines performance. The presence of multiple pests decreased the performance of C. gregata on SCN‐S soybean cultivars (20.6% reduction in disease rating).  相似文献   

16.
Cicindela (Calochroa) whithilli (Hope) and Cicindela (Calochroa) flavomaculata Hope (Cicindelidae: Coleoptera) are seasonally dominant predatory insects in the cultivated, and irrigated rice paddy fields of the South Indian peninsula. While studying the feeding ecology of these tiger beetles in rice paddy agro‐ecosystems in Sringeri area of the central Western Ghats, we examined their potential as biocontrols on the major rice paddy pest populations available in this region. Earthworms and tadpoles were significant prey organisms during the early cultivation period, while other traditional prey organisms like ants and spiders (mainly wolf and jumping spiders) were more common as prey organisms toward the mid‐season. The results showed that the feeding fauna of tiger beetles can extend to prey items beyond arthropods, to include vertebrates. Cicindela (Calochroa) duponti Dejean is another common species that occurs abundantly in the Areca orchards and on the bunds that separate rice paddy fields from adjacent uncultivated lands. We performed laboratory tests to determine the feeding guild of these beetles, and to investigate their possible role as a predator of the rice paddy pests. Although preliminary in nature, the results suggest that both C. whithilli and C. flavomaculata are ineffective as biocontrol agents of rice paddy agro‐ecosystems. They appear to have only a marginal impact on the larvae of Leptocorisa acuta, a major insect pest of paddy rice, but further experimental and observational studies are needed to firmly establish the significance of this observation.  相似文献   

17.
Rice leaffolder, Cnaphalocrocis medinalis (Guenée), is a destructive and widespread pest on rice. In this study, 20 microsatellite markers were isolated and characterized from C. medinalis partial genomic libraries using the method of fast isolation by AFLP of sequence containing repeats. Of these markers, 18 markers displayed polymorphisms. Polymorphisms were evaluated in 48 individuals from two natural populations. The number of alleles per locus ranged from 2 to 15, and the expected and observed heterozygosities ranged from 0.324 to 0.934 and from 0.304 to 0.917, respectively. Cross-species amplification was also performed to test the transferability of the 20 microsatellite markers and a moderate level of cross amplication was observed across the three species of Pyralididae (26.67 %). These microsatellite loci would facilitate the future study on population genetics and molecular genetics of rice leaffolder and would also be useful for study in Chilo suppressalis, Scirpophaga incertulas and Pyrausta nubilalis.  相似文献   

18.
19.
A field experiment was conducted during wet season to evaluate the performance of different fish species for biocontrol of weeds in rainfed waterlogged rice fields with fingerlings of three exotic carps – grass carp, Ctenopharyngodon idella (Val.) (Cyprinidae, Cypriniformes), silver barb, Puntius gonionotus (Bleeker) (Cyprinidae, Cypriniformes) and common carp, Cyprinus carpio (L.) (Cyprinidae, Cypriniformes) – and three Indian major carps – rohu, Labeo rohita (Ham.) (Cyprinidae, Cypriniformes), catla, Catla catla (Ham.) (Cyprinidae, Cypriniformes), mrigal, Cirrhinus mrigala (Ham.) (Cyprinidae, Cypriniformes). A total of 13 major weeds under the categories of grassy, sedges, broadleaf and aquatic weeds were observed in the rice fields. Grass carp reduced maximum weed biomass (weed control efficiency [WCE] 63% at 60 days after transplanting [DAT] and 62% at 100 DAT) followed by silver barb and common carp. Among the Indian carps, only rohu was effective in control of weeds (WCE, 23% at 60 DAT). The grain yield of rice (variety Varshadhan) slightly increased (4.2–4.5 t/ha), but straw yield was significantly higher (10.2–10.7 t/ha) under rice-fish farming. Fish yield was significantly higher in exotic carps (270–288 kg/ha/90days) due to higher specific growth rates (1.8–2% body weight/day). The study indicated that exotic carps (grass carp, silver barb and common carp in order) were more effective than Indian carps for control of weed in rainfed lowland rice fields and among the Indian carps, rohu showed potential for weed control.  相似文献   

20.
Oryza sativa L.) and Arabidopsis (A. thaliana L.) were cultivated for 68.5 hr in the RICE experiment on board during Space Shuttle STS-95 mission, and changes in their growth and morphology were analyzed. Microgravity in space stimulated elongation growth of both rice coleoptiles and Arabidopsis hypocotyls by making their cell walls extensible. In space, rice coleoptiles showed an inclination toward the caryopsis in the basal region and also a spontaneous curvature in the same direction in the elongating region. These inclinations and curvatures were more prominent in the Koshihikari cultivar compared to a dwarf cultivar, Tan-ginbozu. Rice roots elongated in various directions including into the air on orbit, but two thirds of the roots formed a constant angle with the axis of the caryopsis. In space, Arabidopsis hypocotyls also elongated in a variety of directions and about 10% of the hypocotyls grew into the agar medium. No clear curvatures were observed in the elongating region of Arabidopsis hypocotyls. Such a morphology of both types of seedlings was fundamentally similar to that observed on a 3-D clinostat. Thus, it was confirmed by the RICE experiment that rice and Arabidopsis seedlings perform an automorphogenesis under not only simulated but also true microgravity conditions. Received 13 September 1999/ Accepted in revised form 12 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号