首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three‐spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad‐scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.  相似文献   

2.
The status of the pygmy shrew ( Sorex minutus L.) as a native or an introduced species in Ireland has been subject to much debate. To examine this and other aspects of the colonization history of the Irish pygmy shrew, genetic variation was determined in 247 pygmy shrews collected throughout Ireland, using mitochondrial control region sequences and five polymorphic microsatellite loci. Genetic diversity was low for both types of marker. The median-joining network for control region sequences was star-like, suggesting that the colonization of Ireland involved a small number of founders and rapid population expansion thereafter; this was supported by other statistics. Molecular dating with both mitochondrial DNA and microsatellite data is consistent with a human introduction. This would have been several thousand years ago; a recent colonization within historical times can be ruled out. This is the first detailed population genetic study of the pygmy shrew anywhere in its range.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 918–927.  相似文献   

3.
To unravel the postglacial colonization history and the current intercolony dispersal in the common eider, Somateria mollissima, we analysed genetic variation at a part of the mitochondrial control region and five unlinked autosomal microsatellite loci in 175 eiders from 11 breeding colonies, covering the entire European distribution range of this species. As a result of extreme female philopatry, mitochondrial DNA differentiation is substantial both among local colonies and among distant geographical regions. Our study further corroborates the previous hypothesis of a single Pleistocene refugium for European eiders. A nested clade analysis on mitochondrial haplotypes suggests that (i) the Baltic Sea eider population is genetically closest to a presumably ancestral population and that (ii) the postglacial recolonization progressed in a stepwise fashion via the North Sea region and the Faroe Islands to Iceland. Current long-distance dispersal is limited. Differentiation among colonies is much less pronounced at microsatellite loci. The geographical pattern of this nuclear genetic variation is to a large extent explained by isolation by distance. As female dispersal is very limited, the geographical pattern of nuclear variation is probably explained by male-mediated gene flow among breeding colonies. Our study provides genetic evidence for the assumed prominent postglacial colonization route shaping the present terrestrial fauna of the North Atlantic islands Iceland and the Faroes. It suggests that this colonization had been a stepwise process originating in continental Europe. It is the first molecular study on eider duck populations covering their entire European distribution range.  相似文献   

4.
Rhododendron ferrugineum L. (Ericaceae) is a subalpine shrub found throughout the Pyrenees and Alps at elevations of 1600-2200 m. We examined relationships between genetic and geographic distance, using 115 dominant amplified fragment length polymorphism (AFLP) markers to assess genetic structure over a wide range of spatial scales. We sampled 17 sites with distances of 4 km to more than 1000 km between them. At these scales we detected no association between geographic distance and genetic distance between populations. This suggests that genetic drift and gene flow are not in equilibrium for these populations. This pattern could have resulted from recent and rapid postglacial colonization, from more recent human disturbance, or as a function of frequent and random "natural" long-distance colonization. At two of our sites we used transects (two horizontal and two vertical with respect to slope at each site) to sample at distances ranging from 10 m to more than 5000 m. At this scale we observed a positive relationship between genetic and spatial distance along two vertical transects, one at each site. We hypothesize that isolation-by-distance at this smaller scale is a function of restricted gene flow via seed dispersal.  相似文献   

5.
Norway spruce (Picea abies [L.] Karst.) is a broadly distributed European conifer tree whose history has been intensively studied by means of fossil records to infer the location of full‐glacial refugia and the main routes of postglacial colonization. Here we use recently compiled fossil pollen data as a template to examine how past demographic events have influenced the species’ modern genetic diversity. Variation was assessed in the mitochondrial nad1 gene containing two minisatellite regions. Among the 369 populations (4876 trees) assayed, 28 mitochondrial variants were identified. The patterns of population subdivision superimposed on interpolated fossil pollen distributions indicate that survival in separate refugia and postglacial colonization has led to significant structuring of genetic variation in the southern range of the species. The populations in the northern range, on the other hand, showed a shallow genetic structure consistent with the fossil pollen data, suggesting that the vast northern range was colonized from a single refugium. Although the genetic diversity decreased away from the putative refugia, there were large differences between different colonization routes. In the Alps, the diversity decreased over short distances, probably as a result of population bottlenecks caused by the presence of competing tree species. In northern Europe, the diversity was maintained across large areas, corroborating fossil pollen data in suggesting that colonization took place at high population densities. The genetic diversity increased north of the Carpathians, probably as a result of admixture of expanding populations from two separate refugia.  相似文献   

6.
A molecular phylogenetic analysis recovers a pattern consistent with a drift vicariance scenario for the origin of Greater Antillean cichlids. This phylogeny, based on mitochondrial and nuclear genes, reveals that clades on different geographic regions diverged concurrently with the geological separation of these areas. Middle America was initially colonized by South American cichlids in the Cretaceous, most probably through the Cretaceous Island Arc. The separation of Greater Antillean cichlids and their mainland Middle American relatives was caused by a drift vicariance event that took place when the islands became separated from Yucatan in the Eocene. Greater Antillean cichlids are monophyletic and do not have close South American relatives. Therefore, the alternative hypothesis that these cichlids migrated via an Oligocene landbridge from South America is falsified. A marine dispersal hypothesis is not employed because the drift vicariance hypothesis is better able to explain the biogeographic patterns, both temporal and phylogenetic.  相似文献   

7.
We investigated genetic diversity and population structure of the Sitka periwinkle Littorina sitkana along the coastlines of the northwestern Pacific (NWP) to evaluate the possibility of trans-Pacific colonization of this species from the NWP to the northeastern Pacific (NEP) after the Last Glacial Maximum. We sampled L. sitkana from 32 populations in the NWP, and sequenced a region of the mitochondrial cytochrome b oxidase gene for population genetic analyses. The results were compared with those of previous reports from the NEP. The genetic diversity of L. sitkana was much higher in the NWP than in the NEP. Genetic connectivity between the NWP and NEP populations was indicated by an extremely abundant haplotype in the NEP that was also present in eastern Hokkaido and the Kuril Islands. To confirm these results, we compared sequences of the longest intron of the aminopeptidase N gene (APN54) in the nuclear genome in four populations of L. sitkana in the NWP with previous results from the NEP. Again, much higher genetic diversity was found in the NWP than in the NEP and genetic connectivity was supported between the Kuril Islands and the NEP. These results imply postglacial colonization of this species from the NWP to the NEP, probably along the Kuril and Aleutian Island chains. This study is the first report of possible trans-Pacific postglacial colonization of a direct-developing gastropod, inferred from genetic data.  相似文献   

8.
Three species of the arcto-boreal, large gastropod Neptunea , described by Linnaeus in 1758 and 1771, occur in large numbers over wide areas of the inshore North Atlantic and adjacent Arctic seas and are conspicuous among Pliocene and Pleistocene molluscs in the Icelandic, North Sea, and western Mediterranean basins. Selections of lectotypes for these species from shells in the collection of the Linnean Society of London, and designations of their type localities, establish the identity of Linnaeus' neptunes and more accurately determine their geographic and geologic distribution. The geographic range of Neptunea (Neptunea) antiqua (L.), the type species, now extends from southern Norway to the northern Biscay coast of France and from the westernmost Baltic Sea to southwestern Ireland; this species also occurs in Pliocene-Holocene marine deposits in West and East Germany, Sweden, the Netherlands, England and France. Its type locality is determined to be the North Sea. N. (Neptunea) despecta (L.) lives in the eastern Canadian Arctic, off southern Greenland, the Barents Sea, and North Atlantic as far south as Massachusetts and Portugal; it also occurs in Pliocene-Holocene strata of eastern Canada, east-central Greenland, Norway (including Svalbard), the Soviet Union, Sweden and England. Its type locality is determined to be the postglacial deposits at Uddevalla in southwestern Sweden. N. (Sulcosipho) contraria (L.) now extends from the southern Biscay coast of France to Cape Spartel, Morocco; this species also occurs in Pleistocene and lower Holocene sequences of the western Mediterranean. Its type locality is determined to be Vigo Bay, Spain. A closely related fossil species, N. (S.) angulata (S. V. Wood), occurs in Pliocene and Pleistocene deposits of the North Sea basin.  相似文献   

9.
The synchronous origin of agriculture in at least four independent climatic regions at the end of the last glacial period (c10 kyr bp ) points to a global limitation for crop domestication. One hypothesis proposes that a rapid carbon dioxide (CO2) increase from 18 Pa to ~27 Pa during deglaciation caused significant increases in the growth rates of wild crop progenitors, thereby removing a productivity barrier to their successful domestication. However, early C4 crops present a challenge to this hypothesis, because they were among the first domesticates, but have a carbon‐concentrating mechanism that offsets the limitation of photosynthesis by CO2. We investigated the CO2‐limitation hypothesis using the wild progenitors of five C4 founder crops from four independent centres of domestication. Plants were grown in controlled environment chambers at glacial (18 Pa), postglacial (28 Pa) and current ambient (38 Pa) CO2 levels, and photosynthesis, transpiration and biomass were measured. An increase in CO2 from glacial to postglacial levels caused a significant gain in vegetative biomass of up to 40%, but the equivalent rise in CO2 from postglacial to modern levels generally had no effect on biomass. Investigation into the underlying mechanisms showed C4 photosynthesis to be limited more by glacial than postglacial CO2 levels, matching theoretical expectations. Moreover, the increase in CO2 from glacial to postglacial levels caused a reduction in the transpiration rate via decreases in stomatal conductance of ~35%. In combination, these physiological changes conferred a large improvement in water‐use efficiency at the postglacial CO2 partial pressure compared with the glacial level. Our data, therefore, provide experimental support for the CO2‐limitation hypothesis, suggesting that these key physiological changes could have greatly enhanced the productivity of wild crop progenitors after deglaciation.  相似文献   

10.
A recent publication (Pedreschi et al., 2014, Journal of Biogeography, 41 , 548–560) casts doubt over the status of pike (Esox lucius) as a non‐native species in Ireland by reporting two distinct genetic groups of pike present: one a human introduction in the Middle Ages, the other hypothesized to result from natural colonization after the Last Glacial Maximum (LGM). While the existence of two groups is not disputed, the hypothesized natural colonization scenario conflicts with the sequence in which the islands of Britain and Ireland became isolated from Europe after the LGM. An alternative natural colonization scenario raised herein was rejected, leaving an earlier, two‐phase, human introduction of pike from Britain or Europe to Ireland as a realistic alternative hypothesis explaining the results of Pedreschi et al. (2014). This leaves the debates on human introduction versus natural colonization, introduced versus native species status, and pike management in Ireland wide open.  相似文献   

11.
Davies S  White A  Lowe A 《Heredity》2004,93(6):566-576
A simulation-based modelling approach is used to examine the effects of stratified seed dispersal (representing the distribution of the majority of dispersal around the maternal parent and also rare long-distance dispersal) on the genetic structure of maternally inherited genomes and the colonization rate of expanding plant populations. The model is parameterized to approximate postglacial oak colonization in the UK, but is relevant to plant populations that exhibit stratified seed dispersal. The modelling approach considers the colonization of individual plants over a large area (three 500 km x 10 km rolled transects are used to approximate a 500 km x 300 km area). Our approach shows how the interaction of plant population dynamics with stratified dispersal can result in a spatially patchy haplotype structure. We show that while both colonization speeds and the resulting genetic structure are influenced by the characteristics of the dispersal kernel, they are robust to changes in the periodicity of long-distance events, provided the average number of long-distance dispersal events remains constant. We also consider the effects of additional physical and environmental mechanisms on plant colonization. Results show significant changes in genetic structure when the initial colonization of different haplotypes is staggered over time and when a barrier to colonization is introduced. Environmental influences on survivorship and fecundity affect both the genetic structure and the speed of colonization. The importance of these mechanisms in relation to the postglacial spread and genetic structure of oak in the UK is discussed.  相似文献   

12.
A remarkable trend in the evolution of lampreys is the occurrence in most genera of 'paired species', in which the parasitic anadromous lampreys are believed to have given rise to nonparasitic freshwater resident populations. The present work examines the phylogeography of the European paired species Lampetra fluviatilis and Lampetra planeri, in an attempt to elucidate species pair evolutionary history. We studied sequence variation in cytochrome b and ATPase 6, 8 mitochondrial genes in 63 individuals from 21 localities of the paired species throughout their distribution range. Results from the phylogenetic and nested clade analyses were largely consistent, suggesting the existence of three major evolutionary lineages: lineage I and possibly lineage II are widespread throughout Europe, while the most ancestral lineage III is apparently restricted to the Iberian Peninsula. The high genetic diversity observed in the Iberian Peninsula is probably the result of refugial persistence and subsequent accumulation of variation over several ice ages, whereas the low levels of genetic diversity observed in central and northern Europe should reflect a rapid postglacial colonization. Results suggest that L. planeri originated within at least two distinct evolutionary lineages, rejecting the single origin hypothesis. The observed lack of taxa monophyly within lineage I may be the result of ongoing gene flow if the two taxa are alternate life-history forms of a single species. However, structure within lineage I is also consistent with the hypothesis of divergence of taxa after postglacial dispersion (around 2000 generations ago) with incomplete lineage sorting. Further testing of the alternative hypotheses is warranted.  相似文献   

13.
There is great uncertainty about how Ireland attained its current fauna and flora. Long-distance human-mediated colonization from southwestern Europe has been seen as a possible way that Ireland obtained many of its species; however, Britain has (surprisingly) been neglected as a source area for Ireland. The pygmy shrew has long been considered an illustrative model species, such that the uncertainty of the Irish colonization process has been dubbed 'the pygmy shrew syndrome'. Here, we used new genetic data consisting of 218 cytochrome (cyt) b sequences, 153 control region sequences, 17 Y-intron sequences and 335 microsatellite multilocus genotypes to distinguish between four possible hypotheses for the colonization of the British Isles, formulated in the context of previously published data. Cyt b sequences from western Europe were basal to those found in Ireland, but also to those found in the periphery of Britain and several offshore islands. Although the central cyt b haplotype in Ireland was found in northern Spain, we argue that it most likely occurred in Britain also, from where the pygmy shrew colonized Ireland as a human introduction during the Holocene. Y-intron and microsatellite data are consistent with this hypothesis, and the biological traits and distributional data of pygmy shrews argue against long-distance colonization from Spain. The compact starburst of the Irish cyt b expansion and the low genetic diversity across all markers strongly suggests a recent colonization. This detailed molecular study of the pygmy shrew provides a new perspective on an old colonization question.  相似文献   

14.
Summary

This paper describes the route, speed and mode of colonisation of oaks by integrating a number of independent analyses using molecular ecology, palaeoecology and simulation modelling approaches. Using a synthetic map of the contemporary distribution of chloroplast DNA (integrating several published and unpublished data sets and describing variation in 1468 trees from 313 autochthonous stands of Q. robur and Q. petraea from Britain and Ireland), and considering the postglacial topographic landscape, the most likely routes of postglacial colonisation across the British Isles are suggested. The overall pattern of these directions agrees with previous interpretations, but several routes, particularly those into Ireland, differ from previous interpretations and benefit here from using a single synthesised data set. Interestingly, the Atlantic oakwoods appear to have been colonised by individuals bearing a single haplotype (type 12). Two palaeoecology data sets, published separately for Britain and Ireland, are synthesised here and used to infer the timing of first arrival of oaks across the British Isles (between 9500 and 6000 years before present). The maximum observed colonisation speed within the British Isles is approximately 500 m year-1 in central and southern England. Outputs from a simulation model, which mimics postglacial colonisation processes, and which has been parameterised for the colonisation rate observed from the pollen core record and contemporary cpDNA structure, predict that the rapid colonisation rate observed, for at least the southern portion of the British Isles, can only be achieved via very rare (an approximate frequency 0.01%), very long distance seed dispersal events (up to 100 km). Potential agents of such dispersal events are birdsor major meteorological disturbances, e.g. hurricanes. Additional simulation modelling and genetic analysis of latitudinally stratified populations indicate that non-synchronous colonisation fronts, topographic barriers and temperature related survival may also have had an effect on the speed of migration and resulting genetic structure. Finally, in an attempt to record predicted long distance seed dispersal events, a novel curve fitting technique is applied to molecular parentage assignment data for field established seedlings from a contemporary population. A notable discrepancy is recorded between contemporary field estimates (just over 1 km) and those predicted by simulation modelling, and is discussed in detail. A concluding section describes future research priorities.  相似文献   

15.
Species specific colonization abilities and biotic and abiotic filters influence the local and regional faunal composition along colonization trajectories. Using a recent compilation of the occurrences of 1373 darkling beetle (Tenebrionidae) species and subspecies in 49 European countries and major islands, we reconstructed the tenebrionid postglacial colonization of middle and northern Europe from southern European glacial refuges and linked species composition to latitudinal and longitudinal gradients in phylogenetic relatedness across Europe. The majority of European islands and mainland countries appeared to be phylogenetically clustered. We did not find significant latitudinal trends in average phylogenetic relatedness of regional faunas along the supposed postglacial colonization routes but detected a strong positive correlation between mean relatedness and longitude of mainland faunas and an opposite negative correlation for island faunas. The strength of phylogenetic relatedness in the regional tenebrionid faunas decreased significantly with latitude and to a lesser degree with longitude. These findings are in accordance with two trajectories of postglacial colonization from centres in Spain and middle Asia that caused a strong longitudinal trend in the phylogenetic relatedness. Subsequent pair‐wise analyses of species co‐occurrences showed that species of similar distributional ranges tend to be phylogenetically clustered and species of different spatial distribution to be phylogenetically segregated. Both findings are in accordance with the concept of ‘range size heritability’. Our study demonstrates that taxonomic data are sufficiently powerful to infer continental wide patterns in phylogenetic relatedness that can be linked to colonization history and geographic information.  相似文献   

16.
Runck AM  Cook JA 《Molecular ecology》2005,14(5):1445-1456
Dynamic climatic oscillations of the Pleistocene dramatically changed the distributions of high latitude species. Molecular investigations of a variety of organisms show that processes of postglacial colonization of boreal regions were more complex than initially thought. Phylogeographical and coalescent analyses were conducted on partial sequences of the cytochrome b gene (600 bp) from 64 individuals of Clethrionomys gapperi from North Carolina, Pennsylvania, Minnesota, Idaho, Washington, British Columbia, Northwest Territories, and Alaska to test hypotheses relating to Pleistocene refugia and postglacial colonization routes. Three divergent clades (east, west, central) were identified with highest net divergence (dA = 5.2%) between the eastern and western clades. Populations from the recently deglaciated higher latitudes of Canada and Alaska are closely related to lower latitude populations of the central clade (dA = 1.2%) suggesting recent expansion from this midwestern region. No representatives from the east or west clade were found at latitudes higher than 50 degrees N, indicating that postglacial colonization occurred through a midcontinental route. The high latitude population from the Northwest Territories exhibited demographic patterns and genetic diversity consistent with a stable noncolonizing population. This population is found near the Mackenzie range, where the two continental ice sheets were believed to have coalesced. Molecular variation observed in this population may be the result of leading edge population diversifying in the continental corridor or may reflect the signal of a high latitude refugial population.  相似文献   

17.
Recent decreases in biodiversity in Europe are commonly thought to be due to land use and climate change. However, the genetic diversity of populations is also seen as one essential factor for their fitness. Genetic diversity in species across the continent of Europe has been recognized as being in part a consequence of ice age isolation in southern refugia and postglacial colonization northwards, and these phylogeographical patterns may themselves affect the adaptability of populations. Recent work on butterfly species with different refugia, colonization paths and genetic structures allows this idea to be examined. The 'chalk-hill blue' pattern is one of decreasing genetic diversity from south to north, whereas the 'woodland ringlet' pattern shows greater genetic diversity in eastern than in western lineages. Comparison of population demographic trends in species with these biogeographical patterns reveals higher rates of decrease with lower genetic diversity. This indicates reduced adaptability due to genetic impoverishment as a result of glacial and postglacial range changes. Analysis of phylogeographical pattern may be a useful guide to interpreting demographic trends and in conservation planning.  相似文献   

18.
The barbastelle (Barbastella barbastellus) is a rare forest bat with a wide distribution in Europe. Here, we combine results from the analysis of two mtDNA fragments with species distribution modelling to determine glacial refugia and postglacial colonization routes. We also investigated whether niche conservatism occurs in this species. Glacial refugia were identified in the three southern European peninsulas: Iberia, Italy and the Balkans. These latter two refugia played a major role in the postglacial colonization process, with their populations expanding to England and central Europe, respectively. Palaeo‐distribution models predicted that suitable climatic conditions existed in the inferred refugia during the last glacial maximum (LGM). Nevertheless, the overlap between the current and the LGM distributions was almost inexistent in Italy and in the Balkans, meaning that B. barbastellus populations were forced to shift range between glacial and interglacial periods, a process that probably caused some local extinctions. In contrast, Iberian populations showed a ‘refugia within refugium’ pattern, with two unconnected areas containing stable populations (populations that subsisted during both glacial and interglacial phases). Moreover, the match between LGM models and the refugial areas determined by molecular analysis supported the hypothesis of niche conservatism in B. barbastellus. We argue that geographic patterns of genetic structuring, altogether with the modelling results, indicate the existence of four management units for conservation: Morocco, Iberia, Italy and UK, and Balkans and central Europe. In addition, all countries sampled possessed unique gene pools, thus stressing the need for the conservation of local populations.  相似文献   

19.
We investigated phylogeography, demography, and population connectivity of the dugong (Dugong dugon) in Australian waters using mitochondrial control region DNA sequences from 177 Australian dugongs and 11 from elsewhere. The dugong is widespread in shallow Indo‐West Pacific waters suitable for growth of its main food, seagrass. We hypothesized that the loss of habitat and creation of a land barrier (the Torres Strait landbridge) during low sea level stands associated with Pleistocene glacial cycles have left a persisting genetic signature in the dugong. The landbridge was most recently flooded about 7,000 yr ago. Individual dugongs are capable of traveling long distances, suggesting an alternative hypothesis that there might now be little genetic differentiation across the dugong's Australian range. We demonstrated that Australian dugongs fall into two distinct maternal lineages and exhibit a phylogeographic pattern reflecting Pleistocene sea‐level fluctuations. Within each lineage, genetic structure exists, albeit at large spatial scales. We suggest that these lineages diverged following the last emergence of the Torres Strait landbridge (ca. 115 kya) and remained geographically separated until after 7 kya when passage through Torres Strait again became possible for marine animals. Evidence for population growth in the widespread lineage, especially after the last glacial maximum, was detected.  相似文献   

20.
Littorina saxatilis is a ubiquitous snail of intertidal habitats in the North Atlantic. Shell type in littorinids is extremely polymorphic and defined by habitat. Taxonomy based upon shell type has been revised in the light of anatomic and genetic information, but uncertainties remain. In this study, the population structure of L. saxatilis and L. tenebrosa was studied at 11 sites in Ireland using single-strand conformational polymorphisms of a 375-bp portion of the cytochrome b gene, and the status of L. tenebrosa, the small, fragile-shelled, brackish water type, was considered. The genetic patterns among L. saxatilis and L. tenebrosa populations were examined over varying distances and L. tenebrosa was compared with adjacent L. saxatilis populations at four sites on the west coast of Ireland and one site on the east coast. Haplotype diversity was high with 32 haplotypes present among 995 individuals. Pairwise tests suggest gene flow over small scales among and between habitat types and may reflect the stochastic legacy of postglacial recolonization over larger scales. In AMOVA tests, geography explained nearly twice as much of the variance (30%) as habitat type (18%), indicating that gene flow is more restricted by distance than by habitat type, and supporting the status of L. tenebrosa as an ecotype of L. saxatilis rather than a separate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号