首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity of a HCO-3 stimulated Mg2+ dependent ATPase is demonstrated in mitochondrial fractions of the avian duodenum. Suppression of eggshell calcification resulted in a slight reduction in Mg2+, Ca2+ and Mg2+HCO-3 ATPase activities. Duodenal carbonic anhydrase activity was lower in birds laying soft-shelled eggs than in birds laying normal eggs. Alkaline phosphatase and calcium binding protein levels both decreased along the length of the small intestine, but the effect was more pronounced for alkaline phosphatase. Suppression of eggshell calcification and treatment of shell-less laying hens with 1,25(OH)2D3 influenced alkaline phosphatase activity only in the duodenal mucosa. Suppression of eggshell calcification reduced CaBP levels in all sections of the intestine. Treatment with 1,25(OH)2D3 restored CaBP levels. Regulation of intestinal CaBP levels by 1,25(OH)2D3 would therefore, seem to be controlled more directly by calcium requirements associated with eggshell calcification than by gonadal hormones.  相似文献   

2.
Structural and functional properties of a Ca2+-ATPase from human platelets   总被引:3,自引:0,他引:3  
An antibody prepared against highly purified rabbit muscle Ca2+-ATPase from sarcoplasmic reticulum has been observed to cross-react with proteins in human platelet membrane vesicles. The antibody specifically precipitated Ca2+-ATPase activity from solubilized human platelet membranes and recognized two platelet polypeptides denatured in sodium dodecyl sulfate with Mr = 107,000 and 101,000. Ca2+-ATPase activity from Brij 78-solubilized platelet membranes was purified up to 10-fold. The purified preparation consisted mainly of two polypeptides with Mr approximately 100,000, and 40,000. The lower molecular weight protein appeared unrelated to Ca2+-ATPase activity. The Ca2+-ATPase in human platelet membrane vesicles exhibited "negative cooperativity" with respect to the kinetics of ATP hydrolysis. The apparent Km for Ca2+ activation of ATPase activity was 0.1 microM. Ca2+-dependent phosphorylation of platelet vesicles by [gamma-32P]ATP at 0 degrees C yielded a maximum of 0.2-0.4 nmol of PO4/mg of protein that was labile at pH 7.0 and 20 degrees C. This result suggests that only about 2-4% of the total protein in platelet membrane vesicles is the Ca2+-ATPase, which agrees with an estimate based on the specific activity of the Ca2+-ATPase in platelet membranes (20-50 nmol of ATP hydrolyzed/min/mg of protein at 30 degrees C). Calmodulin resulted in only a 1.6-fold stimulation of Ca2+-ATPase activity even after extensive washing of membranes with a calcium chelator or chlorpromazine. It is concluded that human platelets contain a Ca2+-ATPase immunochemically related to the Ca2+ pump from rabbit sarcoplasmic reticulum and that the enzymatic characteristics and molecular weight of the platelet ATPase are quite similar to those of the muscle ATPase.  相似文献   

3.
Stimulation of Mg2+, Ca2+ and Mg2+HCO-3 dependent ATPase activity in mitochondrial and microsomal fractions from the uteri of laying hens is demonstrated. ATPase activity was greatest with 5 mM concentrations of Mg2+ at pH 8.5, and at pH 7.4-7.8 following the addition of bicarbonate. Suppression of eggshell calcification, induced by insertion of a thread into the uterus, did not alter Mg2+, Ca2+ and Mg2+HCO-3 ATPase activities. Alkaline phosphatase activity was generally low, and was unaffected by suppression of eggshell calcification. Levels of carbonic anhydrase and calcium binding protein were lower in the uteri of hens laying shell-less eggs. Injections of 1,25(OH)2D3 in hens laying shell-less eggs did not alter CaBP levels or enzyme activities. It is concluded that factors other than 1,25(OH)2D3 and gonadal hormones are involved in the regulation of uterine CaBP levels.  相似文献   

4.
Rocky S Tuan   《Cell calcium》1980,1(6):411-429
Biosynthesis of the calcium-binding protein (CaBP) of the chick embryonic chorioallantoic membrane (CAM) was studied using organ culture and cell-free translation. The organ culture studies showed: 1) The CaBP is a relatively stable protein ( ); 2) Biosynthesis of the CaBP involves microsomes and includes two posttranslational modifications, glycosylation and γ-glutamyl carboxylation; and 3) During embryonic development, a single species of the CaBP is expressed in the CAM. Cell-free translation of total CAM mRNA, including CaBP mRNA, was achieved in a rabbit reticulocyte lysate system using [35S]Met as a tracer. Based on the properties of the nascent CaBP polypeptide translated in the presence or absence of microsomal membranes, the early stages of CaBP synthesis appear to be: translation of CaBP mRNA on membrane-bound polysomes, insertion and translocation of the nascent polypeptide across microsomal membranes, and co-translational cleavage of a signal sequence.  相似文献   

5.
SR vesicles from rabbit slow-twitch muscle reveal high activity (0.7-0.9 mumol/mg X min) of "basic" or Mg2+-ATPase. This enzyme differs in its biochemical properties from the well characterized Ca2+ pump ATPase. It is active in millimolar concentration of magnesium or calcium. The activity is inhibited by various detergents except for digitonin. This enzyme seems to be an integral membrane protein since it remains in the membrane after removal of peripheral proteins with EDTA. It can be partially solubilized from the membrane using digitonin without a decrease in specific activity. Ion exchange chromatography on DEAE-Sephacel of the post digitonin supernatant allows us to obtain a 5-fold increase in Mg2+-ATPase specific activity concomitantly with the enrichment in two proteins of Mr = 30,000 and 150,000.  相似文献   

6.
The preparation of a specific antiserum (anti-CaBP) against the calcium-binding protein (CaBP) of the chorioallantoic membrane (CAM) is described. The anti-CaBP appeared to be specific for the CaBP by immunodiffusion and immunoelectrophoresis. Application of the anti-CaBP in immunofluorescence histochemistry revealed that the CaBP is present in the CAM only at developmental ages corresponding with the expression of the calcium transport function of the membrane. Furthermore, the CaBP is localized to the ectoderm of the CAM, appears to be exposed to the entire external surface of the ectoderm, and can be shown to be associated with cells enzymatically dissociated from the CAM. These results are consistent with a functional role of the CaBP in the CAM calcium transport process.  相似文献   

7.
Our previous studies indicate that bacterial lipopolysaccharide (LPS) enhances natural killer (NK) cell-mediated cytotoxicity and increases intracellular calcium (Ca2+) in hepatocytes. Calmodulin (CAM) regulates Ca2(+)-ATPase activity, intracellular Ca2+, and is also implicated in NK cell-mediated cytolysis. In the present work, the effects of LPS and CAM on Ca2(+)-ATPase and intracellular Ca2+ in human NK cells were studied by a combined technique of immunogold electron microscopy and ultracytochemistry. Peripheral blood mononuclear cells were treated with 100 micrograms/ml E. coli (0111:B4) LPS and/or 5 micrograms/ml CAM in RPMI 1640 medium at 37 degrees C for 1 or 4 hr. NK cells labeled with monoclonal anti-Leu-11a (CD16) antibody and colloidal gold-conjugated anti-mouse IgG were processed for cytochemical localization of Ca2(+)-ATPase and Ca2+. Ca2(+)-ATPase was localized in the plasma membrane of NK cells, and its activity was suppressed by LPS but was enhanced by CAM. However, no apparent changes in the enzyme reaction were observed when cells were exposed to CAM concomitantly with LPS or stimulated with LPS before CAM. Apparent reduction of the enzyme reaction was observed when LPS stimulation was preceded by CAM. Ca2(+)-ATPase reaction in mitochondria was observed only in NK cells exposed to CAM. Computer image analysis showed no changes in the intracellular Ca2+ in NK cells treated with LPS for 1 hr, whereas a significant increase in Ca2+ was found in cells exposed to LPS for 4 hr. The intracellular Ca2+ significantly decreased in NK cells treated with CAM or with a combination of LPS and CAM as compared to that of controls (p less than 0.05). The results indicate that CAM is capable of blocking or reversing the inhibitory effect of LPS on Ca2(+)-ATPase, and suggest that in human NK cells the plasma membrane-associated Ca2(+)-ATPase is responsible for extrusion of intracellular Ca2+.  相似文献   

8.
The Ca2+-transport system of human erythrocyte membranes was solubilized by deoxycholate in the presence of the nonionic detergent Tween 20 and was purified by calmodulin affinity chromatography. The method yields a functional enzyme, which as compared with the erythrocyte membrane was purified 207-fold based on specific activity, and about 330-fold based on protein content. The activity of the isolated enzyme can be increased about 9-fold by the addition of calmodulin, resulting in a specific activity of 10.1 mumoles/mg . min at 37 degrees C. Triton X-100 and deoxycholate stimulate the calmodulin-deficient Ca2+-ATPase in a concentration dependent manner, which results in a loss of the calmodulin-sensitivity. The Ca2+-transport ATPase could be reconstituted after solubilization of the ATPase by deoxycholate and controlled dialysis near room temperature. The system was reconstituted to form membraneous vesicles capable of energized Ca2+ accumulation. The membrane vesicles showed a protein to lipid ratio (approx. 60% protein and 40% lipid) similar to that of the original erythrocyte membrane. The stimulation by calmodulin of the calmodulin-depleted membrane-bound and partially purified Ca2+-ATPase is strongly time dependent. At a Ca2+-concentration of 40 microM and low calmodulin concentrations, approx. 120 min are required to regain full activity. This time period is decreased to about 15 min in the presence of a high excess of calmodulin. Vice versa, at fixed concentrations of calmodulin, the time necessary for regain of full activity is decreased as the Ca2+ concentrations is increased. The dependence of the Ca2+-ATPase activity on the calmodulin concentration shows strong deviation from Michaelis-Menten kinetics at Ca2+ concentrations below (4--10 microM) and above (200 microM) the optimum concentration of 40 microM. Mathematical analysis of the results at 200 microM Ca2+ leads to the assumption that 4 calmodulin molecules interact with one oligomer of Ca2+-ATPase consisting of 4 identical subunits.  相似文献   

9.
Treatment by EDTA of purified plasma membranes from MF2S cells (a variant of the murine plasmacytoma MOPC 173) solubilized proteins and increased by a 1000-fold the sensitivity of (Na+ + K+)-ATPase to ouabain. When added back with Ca2+ to treated plasma membranes, these EDTA-solubilized proteins restored the initial sensitivity of the enzyme to its inhibitor. We report the purification of a protein of Mr 32000, isolated from the EDTA-treated membrane supernatant. This protein was purified by a one-step procedure involving a preparative polyacrylamide gel electrophoresis without detergent. In the presence of Ca2+ it was able to restore the original sensitivity to ouabain of (Na+ + K+)-ATPase from EDTA-treated membrane. This protein was shown to be similar to the beta-actinin described by Maruyama by the following criteria: (1) molecular weight and amino acid composition; (2) cross-reactivity with their respective antisera; (3) in the presence of Ca2+ the same quantitative biological activity on ouabain sensitivity of the (Na+ + K+)-ATPase. A possible interaction between beta-actinin, calmodulin and membrane-bound (Na+ + K+)-ATPase is discussed.  相似文献   

10.
Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3',5'-monophosphate (cAMP)-dependent and by Ca2+-calmodulin-dependent protein kinases on an Mr 22 000 protein called phospholamban. Both types of phosphorylation are associated with an increase in the initial rate of Ca2+ transport. Thus, phospholamban appears to be a regulator for the calcium pump in cardiac sarcoplasmic reticulum. However, there is conflicting evidence as to the degree of association of the Ca2+-ATPase with its regulator, phospholamban. In this study, we report that phospholamban does not copurify with a Ca2+-ATPase preparation of high specific activity. Although 32P-labeled phospholamban is solubilized in the same fraction as the Ca2+-ATPase from cardiac sarcoplasmic reticulum, it dissociates from the Ca2+ pump during subsequent purification steps. Our isolation procedure results in an increase of over 4-fold in the specific activity of the Ca2+-ATPase, but a decrease of 2.5-fold in the specific activity of 32Pi-phosphoester bonds (pmol Pi/mg). Furthermore, the purified Ca2+-ATPase enzyme preparation is not a substrate for protein kinase in vitro to any significant extent. These data indicate that phospholamban does not copurify with the Ca2+-ATPase from cardiac sarcoplasmic reticulum. Isolation of a Ca2+-ATPase preparation essentially free of phospholamban will aid in future kinetic studies designed to elucidate similarities and differences in the Ca2+-ATPase parameters from cardiac and skeletal muscle (which is known not to contain phospholamban).  相似文献   

11.
Limited proteolysis of the plasma membrane calcium transport ATPase (Ca2+-ATPase) from human erythrocytes by trypsin produces a calmodulin-like activation of its ATP hydrolytic activity and abolishes its calmodulin sensitivity. We now demonstrate a similar kind of activation of the human erythrocyte membrane Ca2+-ATPase by calpain (calcium-dependent neutral protease) isolated from the human red cell cytosol. Upon incubation of red blood cell membranes with purified calpain in the presence of Ca2+ the membrane-bound Ca2+-ATPase activity was increased and its sensitivity to calmodulin was lost. In contrast to the action of other proteases tested, proteolysis by calpain favors activation over inactivation of the Ca2+-ATPase activity, except at calpain concentrations more than 2 orders of magnitude higher. Exogenous calmodulin protects the Ca2+-ATPase against calpain-mediated activation at concentrations which also activate the Ca2+-ATPase activity. Calcium-dependent proteolytic modification of the Ca2+-ATPase could provide a mechanism for the irreversible activation of the membrane-bound enzyme.  相似文献   

12.
During embryonic development of the chick, the onset of calcium transport by the chorioallantoic membrane (CAM) is concomitant with the appearance of a calcium-binding protein (CaBP). The development-specific expression of the CaBP in the CAM is inhibited by vitamin K antagonism in ovo with the anticoagulant, warfarin. However, the CaBP remains immunologically detectable in the CAM of warfarin-treated embryos, suggesting the presence of a precursor form of the CaBP. Previously, we have demonstrated that CaBP expression in CAM organ cultures is inducible by vitamin K. Furthermore, the CaBP contains several residues of the modified amino acid, gamma-carboxyglutamic acid (gamma-CGlu), which has been shown to be formed by vitamin K-dependent carboxylation of glutamic acid in several plasma clotting proteins. This study reports the presence of a post-translational, vitamin K-dependent gamma-glutamyl carboxylase activity in the CAM. Our results show that explants of CAM incorporate H14CO3 in an age-specific and vitamin K-dependent manner. Incorporation of H14CO3 by the CAM is further potentiated by warfarin treatment of the embryos, presumably owing to an elevation of the amount of endogenous uncarboxylated protein precursor(s). Among the subcellular (nuclear, mitochondrial, microsomal, and soluble) fractions of the CAM, only microsomes exhibit specific incorporation of of H14CO3 into gamma-CGlu. The CAM microsomal carboxylation activity is post-translational, vitamin K-dependent, specific for prenylated homologs of vitamin K, sensitive to warfarin, and appears to be unrelated to the activities of biotin-dependent carboxylases or phosphoenolpyruvate carboxykinase. Optimal carboxylation activity occurs after incubation of the microsomes with H14CO3 for 60 min at 37 degrees C in the presence of over 100 microgram of vitamin K1/ml.  相似文献   

13.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

14.
In order to investigate the influence of the egg shell on the process of shell calcium mobilization by the chorioallantoic membrane (CAM), chick embryos were maintained in long-term cultures in vitro without the shells. The shell-less embryos were severely calcium deficient and showed signs of retarded development and anomalous skeletal calcification. Throughout development, calcium transport and calcium-binding protein (CaBP) activities were diminished in the CAM of shell-less embryos as compared to those of control embryos which developed in ovo. The levels of developmentally expressed carbonic anhydrase activity remained, however, similar. By means of a single radial immunodiffusion assay of CaBP using a specific anti-CaBP antiserum, the level of immunoreactive CaBP was found to be significantly increased in the CAM of the shell-less embryos. These studies indicate that the CAM of chick embryos cultured under shell-less conditions is defective in calcium transport, probably as a result of the expression of an inactive form of the CaBP.  相似文献   

15.
Membrane-bound Ca or Mg of sarcoplasmic reticulum fragments were removed by treating the membrane with EDTA or an acidic solution, and the changes in the enzymatic activities of sarcoplasmic reticulum fragments induced by these treatments were examined. With the decrease in the amount of membrane-bound Ca below 1-3-10(-8) mol/mg protein, it was demonstrated that the activity of (Ca2+ + Mg2+)-ATPase transiently increased and then diminished, that the Ca-uptake and phosphoenzyme formation declined gradually, and that the activity of Mg2+-ATPase was affected to a less extent. Sodium dodecyl sulfate-gel electrophoretic patterns of peptides from the metal-deficient membranes were the same as those of the untreated material. The level of the phosphoenzyme formation of the metal-deficient membrane was restored by increasing the amount of membrane-bound Ca, but not by increasing the amount of membrane-bound Mg.  相似文献   

16.
Sarcoplasmic reticulum isolated from moderately fast rabbit skeletal muscle contains intrinsic adenosine 3',5'-monophosphate (cAMP)-independent protein kinase activity and a substrate of 100 000 Mr. Phosphorylation of skeletal sarcoplasmic reticulum by either endogenous membrane bound or exogenous cAMP-dependent protein kinase results in stimulation of the initial rates of Ca2+ transport and Ca2+-ATPase activity. To determine the molecular mechanism by which protein kinase-dependent phosphorylation regulates the calcium pump in skeletal sarcoplasmic reticulum, we examined the effects of protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Skeletal sarcoplasmic reticulum vesicles were preincubated with cAMP and cAMP-dependent protein kinase in the presence (phosphorylated sarcoplasmic reticulum) and absence (control sarcoplasmic reticulum) of adenosine 5'-triphosphate (ATP). Control and phosphorylated sarcoplasmic reticulum were subsequently assayed for formation (5-100 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase. Protein kinase mediated phosphorylation of skeletal sarcoplasmic reticulum resulted in pronounced stimulation of initial rates and levels of E approximately P in sarcoplasmic reticulum preincubated with either ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) prior to assay (Ca2+-free sarcoplasmic reticulum), or with calcium/EGTA buffer (Ca2+-bound sarcoplasmic reticulum). These effects were evident within a wide range of ionized Ca2+. Phosphorylation of skeletal sarcoplasmic reticulum by protein kinase also increased the initial rate of E approximately P decomposition. These findings suggest that protein kinase-dependent phosphorylation of skeletal sarcoplasmic reticulum regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the active calcium transport observed at steady state.  相似文献   

17.
Ca2+-stimulated, Mg2+-dependent ATPase in bovine thyroid plasma membranes   总被引:1,自引:0,他引:1  
An isolated plasma membrane fraction from bovine thyroid glands contained a Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ((Ca2+ + Mg2+)-ATPase) activity which was purified in parallel to (Na+ + K+)-ATPase and adenylate cyclase. The (Ca2+ + Mg2+)-ATPase activity was maximally stimulated by approx. 200 microM added calcium in the presence of approx. 200 microM EGTA (69.7 +/- 5.2 nmol/mg protein per min). In EGTA-washed membranes, the enzyme was stimulated by calmodulin and inhibited by trifluoperazine.  相似文献   

18.
The data are presented concerning the role of cAMP-dependent phosphorylation of sarcoplasmic reticulum and sarcolemma proteins in the transport of Ca2+ through the cardiac skeletal and smooth muscle membranes. Phosphorylation of membrane proteins by soluble and membrane-bound cAMP-dependent protein kinases is shown to have a regulating effect on Mn2+-, Ca2+-ATPase activity and to change membrane permeability for Ca2+. The molecular mechanisms and the character of the interaction between the transport systems and the phosphorylating protein substrates have not been yet established.  相似文献   

19.
The Ca2+ channel antagonists receptor from rabbit skeletal muscle was purified to homogeneity. Following reconstitution into phosphatidylcholine vesicles, binding experiments with (+)[3H]PN 200-110, (-)[3H]D888 and d-cis-[3H]diltiazem demonstrated that receptor sites for the three most common Ca2+ channel markers copurified with binding stoichiometries close to 1:1:1. Sodium dodecyl sulfate gel analysis of the purified receptor showed that it is composed of only one protein of Mr 170,000 under non-reducing conditions and of two polypeptides of Mr 140,000 and 32,000 under disulfide-reducing conditions. Iodination of the protein of Mr 170,000 and immunoblots experiments with antisera directed against the different components demonstrated that the Ca2+ channel antagonists receptor is a complex of Mr 170,000 composed of a polypeptide chain of Mr 140,000 associated to one polypeptide chain of Mr 32,000 by disulfide bridges. One of the problems concerning this subunit structure of the putative Ca2+ channel was the presence of smaller polypeptide chains of Mr 29,000 and 25,000. Peptide mapping of these polypeptide chains and analysis of their cross-reactivity with sera directed against the proteins of Mr 170,000 and 32,000 demonstrated that they were degradative products of the Mr 32,000 component. Both the large (140 kDa) and the small (32 kDa) component of the putative Ca2+ channel are heavily glycosylated. At least 20-22% of their mass were removed by enzymatic deglycosylation. Finally the possibility that both the 140-kDa and 32-kDa components originate from a single polypeptide chain of Mr 170,000 which is cleaved by proteolysis upon purification is discussed.  相似文献   

20.
The aim of this study was to investigate (a) whether Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) participates in the regulation of plasma membrane Ca2+-ATPase and (b) its possible cross-talk with other kinase-mediated modulatory pathways of the pump. Using isolated innervated membranes of the electrocytes from Electrophorus electricus L., we found that stimulation of endogenous protein kinase A (PKA) strongly phosphorylated membrane-bound CaM kinase II with simultaneous substantial activation of the Ca2+ pump (approximately 2-fold). The addition of cAMP (5-50 pM), forskolin (10 nM), or cholera toxin (10 or 100 nM) stimulated both CaM kinase II phosphorylation and Ca2+-ATPase activity, whereas these activation processes were cancelled by an inhibitor of the PKA alpha-catalytic subunit. When CaM kinase II was blocked by its specific inhibitor KN-93, the Ca2+-ATPase activity decreased to the levels measured in the absence of calmodulin; the unusually high Ca2+ affinity dropped 2-fold; and the PKA-mediated stimulation of Ca2+-ATPase was no longer seen. Hydroxylamine-resistant phosphorylation of the Ca2+-ATPase strongly increased when the PKA pathway was activated, and this phosphorylation was suppressed by inhibition of CaM kinase II. We conclude that CaM kinase II is an intermediate in a complex regulatory network of the electrocyte Ca2+ pump, which also involves calmodulin and PKA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号