首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calponin contributes to the regulation of smooth muscle contraction through its interaction with F-actin and inhibition of the actin-activated Mg-ATPase activity of phosphorylated myosin. Previous studies have shown that the contractile agonist acetylcholine induced a direct association of translocated calponin and PKC-alpha in the membrane. In the present study, we have determined the domain of PKC-alpha involved in direct association with calponin. In vitro binding assay was carried out by incubating glutathione S-transferase-calponin aa 92-229 with His-tagged proteins of individual domains and different combinations of domains of PKC-alpha. Calponin was found to bind directly to the full-length PKC-alpha. Calponin bound to C2 and C4 domains but not to C1 and C3 domains of PKC-alpha. When incubated with proteins of different combination of domains, calponin bound to C2-C3, C3-C4, and C2-C3-C4 but not to C1-C2 or C1-C2-C3. To determine whether these in vitro bindings mimic the in vivo associations, and in vivo binding assay was performed by transfecting colonic smooth muscle cells with His-tagged proteins of individual domains and different combinations of domains of PKC-alpha. Coimmunoprecipitation of calponin with His-tagged truncated forms of PKC-alpha showed that C1-C2, C1-C2-C3, C2-C3, and C3-C4 did not associate with calponin. Calponin associated only with full-length PKC-alpha and with C2-C3-C4 in cells in the resting state, and this association increased upon stimulation with acetylcholine. These data suggest that calponin bound to fragments that may mimic the active form of PKC-alpha and that the functional association of PKC-alpha with calponin requires both C2 and C4 domains during contraction of colonic smooth muscle cells.  相似文献   

2.
Calponin has been implicated in the regulation of smooth muscle contraction through its interaction with F-actin and inhibition of the actin-activated MgATPase activity of phosphorylated myosin. Calponin has also been shown to interact with PKC. We have studied the interaction of calponin with PKC-alpha and with the low molecular weight heat-shock protein (HSP)27 in contraction of colonic smooth muscle cells. Particulate fractions from isolated smooth muscle cells were immunoprecipitated with antibodies to calponin and Western blot analyzed with antibodies to HSP27 and to PKC-alpha. Acetylcholine induced a sustained increase in the immunocomplexing of calponin with HSP27 and of calponin with PKC-alpha in the particulate fraction, indicating an association of the translocated proteins in the membrane. To examine whether the observed interaction in vivo is due to a direct interaction of calponin with PKC-alpha, a cDNA of 1.3 kb of human calponin gene was PCR amplified. PCR product encoding 622 nt of calponin cDNA (nt 351-972 corresponding to amino acids 92-229) was expressed as fusion glutathione S-transferase (GST) protein in the vector pGEX-KT. We have studied the direct association of GST-calponin fusion protein with recombinant PKC-alpha in vitro. Western blot analysis of the fractions collected after elution with reduced glutathione buffer (pH 8.0) show a coelution of GST-calponin with PKC-alpha, indicating a direct association of GST-calponin with PKC-alpha. These data suggest that there is a direct association of translocated calponin and PKC-alpha in the membrane and a role for the complex calponin-PKC-alpha-HSP27, in contraction of colonic smooth muscle cells.  相似文献   

3.
The recruitment of signal transduction molecules to the membrane is crucial for the efficient coupling of extracellular signals and contractile response. The trafficking is dynamic. We have investigated a possible cross talk between agonist-induced association of translocated RhoA and translocated protein kinase C-alpha (PKC-alpha) and a role for heat shock protein 27 (HSP27) in mediating this interaction. Immunoprecipitation with HSP27 monoclonal antibody followed by immunoblotting with either RhoA antibody or PKC-alpha antibody indicated that acetylcholine induced associations of HSP27-RhoA and HSP27-PKC-alpha in the membrane fraction but not in the cytosolic fraction. Immunoprecipitation with anti-RhoA monoclonal antibody followed by immunoblotting with PKC-alpha antibody indicated that acetylcholine induced a significant complexing of RhoA-PKC-alpha in the membrane fraction but not in the cytosolic fraction. In summary, the data indicate that agonist-induced contraction is associated with 1) association of translocated RhoA with HSP27 on the membrane, 2) association of translocated PKC-alpha with HSP27 on the membrane, and 3) association of PKC-alpha with RhoA on the membrane. The data suggest an important role for HSP27 in modulating a multiprotein complex that includes translocated RhoA and PKC-alpha.  相似文献   

4.
5.
Interleukin-2 tyrosine kinase (Itk), is a T-cell specific tyrosine kinase of the Tec family. We have examined a novel intermolecular interaction between the SH3 and SH2 domains of Itk. In addition to the interaction between the isolated domains, we have found that the dual SH3/SH2 domain-containing fragment of Itk self-associates in a specific manner in solution. Tec family members contain the SH3, SH2 and catalytic domains common to many kinase families but are distinguished by a unique amino-terminal sequence, which contains a proline-rich stretch. Previous work has identified an intramolecular regulatory association between the proline-rich region and the adjacent SH3 domain of Itk. The intermolecular interaction between the SH3 and SH2 domains of Itk that we describe provides a possible mechanism for displacement of this intramolecular regulatory sequence, a step that may be required for full Tec kinase activation. Additionally, localization of the interacting surfaces on both the SH3 and SH2 domains by chemical shift mapping has provided information about the molecular details of this recognition event. The interaction involves the conserved aromatic binding pocket of the SH3 domain and a newly defined binding surface on the SH2 domain. The interacting residues on the SH2 domain do not conform to the consensus motif for an SH3 proline-rich ligand. Interestingly, we note a striking correlation between the SH2 residues that mediate this interaction and those residues that, when mutated in the Tec family member Btk, cause the hereditary immune disorder, X-linked agamaglobulinemia.  相似文献   

6.
Reorganization of the cytoskeleton and association of contractile proteins are important steps in modulating smooth muscle contraction. Heat shock protein (HSP) 27 has significant effects on actin cytoskeletal reorganization during smooth muscle contraction. We investigated the role of phosphorylated HSP27 in modulating acetylcholine-induced sustained contraction of smooth muscle cells from the rabbit colon by transfecting smooth muscle cells with phosphomimic (3D) or nonphosphomimic (3G) HSP27. In 3G cells, the initial peak contractile response at 30 s was inhibited by 25% (24.0 +/- 4.5% decrease in cell length, n = 4). The sustained contraction was greatly inhibited by 75% [9.3 +/-.9% decreases in cell length (n = 4)]. Furthermore, in 3D cells, translocation of both PKCalpha and of RhoA was greatly enhanced and resulted in a greater association of PKCalpha-RhoA in the membrane fraction. In 3G transfected cells, PKCalpha and RhoA failed to translocate in response to stimulation with acetylcholine, resulting in an inhibition of association of PKCalpha-RhoA in the membrane fraction. Studies using GST-RhoA fusion protein indicate that there is a direct association of RhoA with PKCalpha and with HSP27. The results suggest that phosphorylated HSP27 plays a crucial role in the maintenance of association of PKCalpha-RhoA in the membrane fraction and in the maintenance of acetylcholine-induced sustained contraction.  相似文献   

7.
EGF domains are extracellular protein modules cross-linked by three intradomain disulfides. Past studies suggest the existence of two types of EGF domain with three-disulfides, human EGF-like (hEGF) domains and complement C1r-like (cEGF) domains, but to date no functional information has been related to the two different types, and they are not differentiated in sequence or structure databases. We have developed new sequence patterns based on the different C-termini to search specifically for the two types of EGF domains in sequence databases. The exhibited sensitivity and specificity of the new pattern-based method represents a significant advancement over the currently available sequence detection techniques. We re-annotated EGF sequences in the latest release of Swiss-Prot looking for functional relationships that might correlate with EGF type. We show that important post-translational modifications of three-disulfide EGFs, including unusual forms of glycosylation and post-translational proteolytic processing, are dependent on EGF subtype. For example, EGF domains that are shed from the cell surface and mediate intercellular signaling are all hEGFs, as are all human EGF receptor family ligands. Additional experimental data suggest that functional specialization has accompanied subtype divergence. Based on our structural analysis of EGF domains with three-disulfide bonds and comparison to laminin and integrin-like EGF domains with an additional inter-domain disulfide, we propose that these hEGF and cEGF domains may have arisen from a four-disulfide ancestor by selective loss of different cysteine residues.  相似文献   

8.
RhoA is a small G protein that is implicated in the regulation of the actin cytoskeleton, gene expression, and cell cycle progression. It is activated by many agonists whose receptors are linked to heterotrimeric G proteins, but the mechanisms are incompletely understood. In this study, we show that the constitutively active alpha-subunit of the heterotrimeric G protein G(13) associated with the Rho family guanine nucleotide exchange factor Dbl in NIH 3T3 cells and that this resulted in activation of RhoA. This activation was not seen with wild-type Galpha(13) or if Dbl and active Galpha(13) were expressed separately and mixed. In contrast, coexpression of constitutively active Galpha(q) with Dbl did not lead to their association and caused a weak activation of RhoA that was no greater than that observed with wild-type Galpha(q). These findings illustrate that activated Galpha(13) and Dbl can associate in vivo and that this leads to Rho activation.  相似文献   

9.
Boehning D  Joseph SK 《The EMBO journal》2000,19(20):5450-5459
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of intracellular Ca(2+) channels that exist as homo- or heterotetramers. In order to determine whether the N-terminal ligand-binding domain is in close physical proximity to the C-terminal pore domain, we prepared microsomal membranes from COS-7 cells expressing recombinant type I and type III IP(3)R isoforms. Trypsin digestion followed by cross-linking and co-immunoprecipitation of peptide fragments suggested an inter-subunit N- and C-terminal interaction in both homo- and heterotetramers. This observation was further supported by the ability of in vitro translated C-terminal peptides to interact specifically with an N-terminal fusion protein. Using a (45)Ca(2+) flux assay, we provide functional evidence that the ligand-binding domain of one subunit can gate the pore domain of an adjacent subunit. We conclude that common structural motifs are shared between the type I and type III IP(3)Rs and propose that the gating mechanism of IP(3)R Ca(2+) channels involves the association of the N-terminus of one subunit with the C-terminus of an adjacent subunit in both homo- and heterotetrameric complexes.  相似文献   

10.
The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering.  相似文献   

11.
The amino acid sequence of ERp57, which functions in the endoplasmic reticulum together with the lectins calreticulin and calnexin to achieve folding of newly synthesized glycoproteins, is highly similar to that of protein disulfide isomerase (PDI), but they have their own distinct roles in protein folding. We have characterized the domain structure of ERp57 by limited proteolysis and N-terminal sequencing and have found it to be similar but not identical to that of PDI. ERp57 had three major protease-sensitive regions, the first of which was located between residues 120 and 150, the second between 201 and 215, and the third between 313 and 341, the data thus being consistent with a four-domain structure abb'a'. Recombinant expression in Escherichia coli was used to verify the domain boundaries. Each single domain and a b'a' double domain could be produced in the form of soluble, folded polypeptides, as verified by circular dichroism spectra and urea gradient gel electrophoresis. When the ability of ERp57 and its a and a' domains to fold denatured RNase A was studied by electrospray mass analyses, ERp57 markedly enhanced the folding rate at early time points, although less effectively than PDI, but was an ineffective catalyst of the overall process. The a and a' domains produced only minor, if any, increases in the folding rate at the early stages and no increase at the late stages. Interaction of the soluble ERp57 domains with the P domain of calreticulin was studied by chemical cross-linking in vitro. None of the single ERp57 domains nor the b'a' double domain could be cross-linked to the P domain, whereas cross-linking was obtained with a hybrid ERpabb'PDIa'c polypeptide but not with ERpabPDIb'a'c, indicating that multiple domains are involved in this protein-protein interaction and that the b' domain of ERp57 cannot be replaced by that of PDI.  相似文献   

12.
Putative binding sites for zinc are present in the regulatory domain of protein kinase C but a distinct role for zinc has not yet been proposed. Here we show that micromolar concentrations of zinc chloride cause pure rat brain protein kinase C to localize in a detergent-insoluble, cytoskeletal fraction of red cell membranes and to bind to isolated cytoskeleton in the presence of phosphatidylserine. Attachment of protein kinase C to cytoskeleton was accompanied by enhanced expression of binding sites for 3H-phorbol ester, a regulatory ligand of protein kinase C. The active factor in the cytoskeleton was labile to protease suggesting that protein kinase C binds to a cytoskeletal protein.  相似文献   

13.
Tristetraprolin (TTP) is the prototype of a family of CCCH tandem zinc finger proteins that can bind to AU-rich elements in mRNAs and promote their decay. TTP binds to mRNA through its central tandem zinc finger domain; it then promotes mRNA deadenylation, considered to be the rate-limiting step in eukaryotic mRNA decay. We found that TTP and its related family members could bind to certain isoforms of another AU-rich element-binding protein, HNRNPD/AUF1, as well as a related protein, laAUF1. The interaction domain within AUF1p45 appeared to be a C-terminal "GY" region, and the interaction domain within TTP was the tandem zinc finger domain. Surprisingly, binding of AUF1p45 to TTP occurred even with TTP mutants that lacked RNA binding activity. In cell extracts, binding of AUF1p45 to TTP potentiated TTP binding to ARE-containing RNA probes, as determined by RNA gel shift assays; AUF1p45 did not bind to the RNA probes under these conditions. Using purified, recombinant proteins and a synthetic RNA target in FRET assays, we demonstrated that AUF1p45, but not AUF1p37, increased TTP binding affinity for RNA ~5-fold. These data suggest that certain isoforms of AUF1 can serve as "co-activators" of TTP family protein binding to RNA. The results raise interesting questions about the ability of AUF1 isoforms to regulate the mRNA binding and decay-promoting activities of TTP and its family members as well as the ability of AUF1 proteins to serve as possible physical links between TTP and other mRNA decay proteins and structures.  相似文献   

14.
Full-length and 4 nucleotides truncated Locked Nucleic Acid (LNA) modifications of ISIS 3521 were compared for antisense properties in a cellular assay. ISIS 3521 is a 20-mer phosphorothioate designed to hybridise to human protein kinase C-alpha (PKC-alpha) mRNA and is currently submitted to clinical trials against cancer. We report that LNA can potentate this antisense oligo and retain the antisense potential with shorter oligos.  相似文献   

15.

Background

Rho family GTPases are critical regulators of the cytoskeleton and affect cell migration, cell-cell adhesion, and cell-matrix adhesion. As with all GTPases, their activity is determined by their guanine nucleotide-bound state. Understanding how Rho proteins are activated and inactivated has largely focused on regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). However, recent in vitro studies have indicated that GTPases may also be directly regulated by redox agents. We hypothesized that this redox-based mechanism occurs in cells and affects cytoskeletal dynamics, and in this report we conclude this is indeed a novel mechanism of regulating the GTPase RhoA.

Methodology/Principal Findings

In this report, we show that RhoA can be directly activated by reactive oxygen species (ROS) in cells, and that this requires two critical cysteine residues located in a unique redox-sensitive motif within the phosphoryl binding loop. First, we show that ROS can reversibly activate RhoA and induce stress fiber formation, a well characterized readout of RhoA activity. To determine the role of cysteine residues in this mechanism of regulation, we generated cysteine to alanine RhoA mutants. Mutation of these cysteines abolishes ROS-mediated activation and stress fiber formation, indicating that these residues are critical for redox-regulation of RhoA. Importantly, these mutants maintain the ability to be activated by GEFs.

Conclusions/Significance

Our findings identify a novel mechanism for the regulation of RhoA in cells by ROS, which is independent of classical regulatory proteins. This mechanism of regulation may be particularly relevant in pathological conditions where ROS are generated and the cellular redox-balance altered, such as in asthma and ischemia-reperfusion injury.  相似文献   

16.
The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.  相似文献   

17.
The interactions of the phosphotyrosine (Tyr(P))-containing proteins in basal and insulin-stimulated 3T3-L1 adipocytes with src homology 2 (SH2) domains from phosphatidylinositol 3-kinase (PI3K), ras GTPase-activating protein (GAP), and phospholipase C gamma have been examined. The Tyr(P) forms of the insulin receptor and its 160-kDa substrate protein (pp160) associated with fusion proteins containing either or both the SH2 domains of PI3K, but not with fusion proteins containing the two SH2 domains of GAP or phospholipase C gamma. These results demonstrate a specificity for the association of the Tyr(P) form of the insulin receptor and pp160 with SH2 domains that parallels the reported effects of insulin on PI3K, GAP, and phospholipase C gamma in vivo. Immunoprecipitates of pp160 from the cytosol of insulin-treated, but not basal, 3T3-L1 adipocytes contained PI3K activity. Moreover, the Tyr(P) form of pp160 with associated PI3K activity migrated at 10 S on a sucrose velocity gradient, whereas the Tyr(P) form without associated activity migrated at 6 S. These findings indicate that the Tyr(P) form of pp160 associates directly with PI3K in vivo.  相似文献   

18.
In asynchronous populations of HeLa cells maintained at control or heat shock temperatures, HSP70 levels and its subcellular distribution exhibit substantial heterogeneity as demonstrated by indirect immunofluorescence with HSP70-specific monoclonal antibodies. Of particular interest is a subpopulation of cells in which the characteristic nuclear accumulation and nucleolar association of HSP70 is not detected after heat shock treatment. This apparent variation in the heat shock response is not observed when synchronized cells are examined. In this study, we demonstrate that three monoclonal antibodies to HSP70, in particular, do not detect nucleolar-localized HSP70 in heat-shocked G2 cells. This is not due to an inability of G2 cells to respond to heat shock as measured by increased HSP70 mRNA and protein synthesis, or due to a lack of accumulation of HSP70 after heat shock in G2. Rather the epitopes recognized by the various antibodies appear to be inaccessible, perhaps due to the association of HSP70 with other proteins. Non-denaturing immunoprecipitations with these HSP70-specific antibodies suggest that HSP70 may interact with other cellular proteins in a cell cycle-dependent manner.  相似文献   

19.
Flagellin sensing2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extracellular leucine rich repeat (LRR) domain in FLS2 and many other LRR receptors, and we find that the Cys pair N-terminal to the FLS2 LRR is required for normal processing, stability, and function, possibly due to undescribed endoplasmic reticulum quality control mechanisms. By contrast, disruption of the membrane-proximal Cys pair does not block FLS2 function, instead increasing responsiveness to flg22, as indicated by a stronger oxidative burst. There was no evidence for intermolecular FLS2-FLS2 disulfide bridges. Truncated FLS2 containing only the intracellular domain associates with full-length FLS2 and exerts a dominant-negative effect on wild-type FLS2 function that is dependent on expression level but independent of the protein kinase capacity of the truncated protein. FLS2 is insensitive to disruption of multiple N-glycosylation sites, in contrast with the related receptor EF-Tu receptor that can be rendered nonfunctional by disruption of single glycosylation sites. These and additional findings more precisely define the molecular mechanisms of FLS2 receptor function.  相似文献   

20.
CD98 is a type II transmembrane protein involved in neutral and basic amino acid transport and in cell fusion events. CD98 was implicated in the function of integrin adhesion receptors by its capacity to reverse suppression of integrin activation by isolated integrin beta(1A) domains. Here we report that CD98 associates with integrin beta cytoplasmic domains with a unique integrin class and splice variant specificity. In particular, CD98 interacted with the ubiquitous beta(1A) but not the muscle-specific splice variant, beta(1D), or leukocyte-specific beta(7) cytoplasmic domains. The ability of CD98 to associate with integrin cytoplasmic domains correlated with its capacity to reverse suppression of integrin activation. The association of CD98 with integrin beta(1A) cytoplasmic domains may regulate the function and localization of these membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号