共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Fed-batch fermentation of non-supplemented concentrated whey permeate resulted in high ethanol productivity for feeds of lactose for which batch fermentation had a poor performance. At an initial lactose concentration of 100 g/L and a constant lactose feeding rate of 18 g/h we have obtained: ethanol concentration 64 g/L, ethanol productivity 3.3 g/Lh, lactose consumption 100%, ethanol yield 0.47 g/g, and biomass yield 0.058 g/g.Nomenclature St
total lactose fed per medium volume in the bioreactor, g/L
- Si
initial lactose concentration, g/L
- F
lactpse feeding rate, g/h
- P
final ethanol concentration, g/L
- Yp/s
ethanol yield, g ethanol/g lactose
- Yx/s
biomass yield, g biomass/g lactose
- XS
lactose consumption, %
- Qp
overall ethanol volumetric productivity, g/Lh
- m
maximum specific growth rate, h
- qsm
maximum specific lactose consumption rate, g/gh
- qpm
maximum specific ethanol production rate, g/gh 相似文献
2.
Summary The production of solvents from whey permeate in batch fermentation usingClostridium
acetobutylicum P262 was examined. An overall reactor productivity of 0.24 g/l.h was observed, representing a marked improvement over reports using other strains of clostridia. Using a semi-synthetic medium galactose was shown to be as effective a substrate as glucose. When whey permeate was used in which the lactose was hydrolysed prior to fermentation, preferential uptake of glucose over galactose was observed, and such hydrolysis provided no advantage to the fermentation process. 相似文献
3.
Microbial production of 2,3-butanediol from whey permeate 总被引:3,自引:0,他引:3
Summary Of four organisms tested in semi-synthetic medium for the production of 2,3-butanediol from lactose, Klebsiella pneumoniae N.C.I.B. 8017 proved to be the most promising. When tested using rennet whey permeate as substrate, a butanediol concentration of 7.5 g/l, representing a yield of 0.46 g/g lactose utilized, was observed after 96 h incubation. In whey permeate where the lactose had been hydrolysed enzymatically prior to the fermentation, a butanediol concentration of 13.7 g/l, representing a yield of 0.39 g/g sugar utilized was obtained. These results indicate that lactose utilization may be a limiting step in the fermentation process. 相似文献
4.
Summary The use of in-situ gas stripping for the removal of toxic butanol from a batch fermentation usingClostridiumacetobutylicum P262 has been examined. A cold trap was used to recover the butanol. Significant increases in the lactose utilization rate and solvents productivity were obtained. 相似文献
5.
A total of 65 yeast strains were screened for their ability to grow and ferment lactose in a standard DURHAM tube test at 30 °C. Based on the kinetic parameters for lactose and whey lactose fermentations in shake flask cultures, the strain Candida psedotropicalis 65 was chosen for further studies. Some of the cultural parameters affecting ethanolic fermentations on lactose were standardized. At an initial lactose concentration of 100–120 g/l in the medium containing concentrated whey or lactose, at 40 °C and within 48 h, the selected strain reached an ethanol concentration of 41–59 g/l, an ethanol productivity of 1.3–3.0 g/l/h, a lactose consumption of 99%, an ethanol yield 0.4–0.49 g/g and a biomass yield of 0.027 g/g. 相似文献
6.
Summary The effect of pH on growth and lactic acid production ofLactobacillus helveticus was investigated in a continuous culture using supplemented whey ultrafiltrate. Maximum lactate productivity of 5 gl–1h–1 occurred at pH 5.5. Whey permeates concentrated up to four times were fermented using batch cultures. Maximum lactic acid concentration of 95 gl–1 was attained, but residual sugars indicated a possible limitation in growth factors.Nomenclature D
Dilution rate [h–1]
- X
Biomass [gl–1]
- Glu
Glucose consentration [gl–1]
- Gal
Galactose consentration [gl–1]
- S
Substrate, Lactose consentration [gl–1]
- P
Product, Lactate consentration [gl–1]
- Yp/s
Yield, defined as P/S [gg–1]
- ri
Rate of synthesis or consumption of i [gl–1h–1] 相似文献
7.
Neutral β-galactosidase from Kluyveromyces fragilis was immobilized on silanized porous glass modified by glutaraldehyde binding, with retention of more than 90% of its activity. Marked shifts in optimum pH (from 7.0 to 6.0) and temperature (from 35°C to 50°C) of the solid-phase enzyme were observed together with high catalytic activity and reasonable stability at wider pH and temperature ranges than those of the free enzyme. Highly efficient lactose saccharification (86–90%) in whey permeate was achieved both in a batch process and in a recycling packed-bed bioreactor. 相似文献
8.
A.E. Ghaly M.S.A. Tango N.S. Mahmoud A.C. Avery 《World journal of microbiology & biotechnology》2004,20(1):65-75
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation. 相似文献
9.
W.B. Silveira F.J.V. Passos H.C. Mantovani F.M.L. Passos 《Enzyme and microbial technology》2005,36(7):930-936
In order to investigate the effect of lactose concentration and oxygen level on the growth and metabolism of Kluyveromyces marxianus UFV-3 in cheese whey permeate, batch cultures were conducted under aerobic, hypoxic, and anoxic conditions, with lactose at initial concentration ranging from 1 to 240 g L−1. The increase in lactose concentration increased ethanol yield and ethanol volumetric productivity, and has reduced cell yield. When lactose concentration was equal or above 50 g L−1 and the oxygen levels were low, the ethanol yield was close to its theoretical value. Maximum ethanol concentrations attained in this study were 76 and 80 g L−1 in hipoxia and anoxia, respectively. The lactose consumption rate in anoxia was greater than in aerobiosis and hipoxia. However, under anoxia, the lactose consumption rate of K. marxianus followed a saturation kinetics, which was not observed in hypoxia and aerobiosis. All oxygen levels investigated, showed a tendency for saturation of the ethanol production rate above 65 g L−1 lactose. Ethanol production rate was also higher on anoxia. 相似文献
10.
J. Szczodrak 《Engineering in Life Science》1999,19(3):235-250
A new low-cost β-galactosidase (lactase) preparation for whey permeate saccharification was developed and characterized. A biocatalyst with a lactase activity of 10 U/mg, a low transgalactosylase activity and a protein content of 0.22 mg protein/mg was obtained from a fermenter culture of the fungus Penicillium notatum. Factors influencing the enzymatic hydrolysis of lactose, such as reaction time, pH, temperature and enzyme and substrate concentration were standardized to maximize sugar yield from whey permeate. Thus, a 98.1% conversion of 5% lactose in whey permeate to sweet (glucose-galactose) syrup was reached in 48 h using 650 β-galactosidase units/g hydrolyzed substrate. After the immobilization of the acid β-galactosidase from Penicillium notatum on silanized porous glass modified by glutaraldehyde binding, more than 90% of the activity was retained. The marked shifts in the pH value (from 4.0 to 5.0) and optimum temperatures (from 50°C to 60°C) of the solid-phase enzyme were observed and discussed. The immobilized preparation showed high catalytic activity and stability at wider pH and temperature ranges than those of the free enzyme, and under the best operating conditions (lactose, 5%; β-galactosidase, 610–650 U/g lactose; pH 5.0; temperature 55°C), a high efficiency of lactose saccharification (84–88%) in whey permeate was achieved when lactolysis was performed both in a batch process and in a recycling packed-bed bioreactor. It seems that the promising results obtained during the assays performed on a laboratory scale make this immobilizate a new and very viable preparation of β-galactosidase for application in the processing of whey and whey permeates. 相似文献
11.
Whole cells of Lactobacillus helveticus were immobilized in calcium-alginate beads to produce lactic acid from cheese whey ultrafiltrate. Ca-alginate-entrapped cells were characterized by higher fermentation rates and optimum pH than free cells. No difference could be observed in the profile of cell activity against temperature for either type of cells. After a heat treatment, cell activity was higher for free cells than for immobilized cells. Continuous lactic acid fermentation using a packed bed reactor was investigated. 相似文献
12.
Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor 总被引:7,自引:0,他引:7
The economics of incorporating membrane modules in several steps in the conversion of whey permeate to lactic acid was studied. Membrane recycle fermenters operating at a cell concentration of 40 g l–1 resulted in a productivity of 22.5 g l–1h–1 with a lactate concentration of 89 g l–1 and a yield of 0.89. The membrane units (reverse osmosis for preconcentrating whey permeate, hollow-fiber ultrafiltration for clarification and for cell recycling) contribute about 28% of the total fixed capital costs and less than 5% of the operating cost. The two largest costs are whey transportation and yeast extract, contributing about 35% and 38% to the total product cost of US $ 0.98/kg 85% lactate. Without these two costs, unpurified lactate could be produced for $ 0.27/kg. 相似文献
13.
Summary The batch fermentation of whey permeate to lactic acid was improved by supplementing the broth with enzyme-hydrolyzed whey protein. A mathematical model based on laboratory results predicts to a 99% confidence limit the kinetics of this fermentation. Cell growth, acid production and protein and sugar use rates are defined in quantifiable terms related to the state of cell metabolism. The model shows that the constants of the Leudeking-Piret model are not true constants, but must vary with the medium composition, and especially the peptide average molecular weight. The kinetic mechanism on which the model is based also is presented.Nomenclature
K
i
lactic acid inhibition constant (g/l)
-
K
pr
protein saturation constant during cell growth (g/l)
-
K
pr
protein saturation constant during maintenance (g/l)
-
K
s
lactose saturation constant (g/l)
- [LA]
lactic acid concentration (g/l)
- [PR]
protein concentration (g/l)
- [S]
lactose concentration (g/l)
-
t
time (h)
- [X]
cell mass concentration (g/l)
- ,
fermentation constants of Leudeking and Piret
-
specific growth rate (l/h)
-
Y
g, LA/S
acid yield during cell growth (g acid/g sugar)
-
Y
m, LA/S
acid yield during maintenance (g acid/g sugar)
-
Y
x/pr
yield (g cells/g protein)
-
specific sugar use rate during cell growth (g sugar/h·g cell)
-
specific sugar use rate during maintenance (g sugar/h·cell) 相似文献
14.
Continuous production of lactic acid from lactose has been carried out in a stirred-tank reactor with non-growing Lactobacillus helveticus entrapped in calcium alginate beads. A considerably longer operation half-life was obtained in a continuously operated reactor than in a batch-operated reactor. It is possible to simulate the action of entrapped non-growing cells on the basis of information from diffusion and kinetic experiments with suspended free cells. The simulation fit the experimental data over a broad range of substrate concentrations if the specific lactic acid production rate, q P, was used as a variable parameter in the model. The dynamic mathematical model used is divided into three parts: the reactor model, which describes the mass balance in a continuously operated stirred-tank reactor with immobilized biomass, the mass-transfer model including both external diffusion and internal mass transfer, and the kinetic model for uptake of substrate on the basis of a Michaelis-Menten-type mechanism. From kinetic data obtained for free biomass experiments it was found, with the use of non-linear parameter estimation techniques, that the conversion rate of lactose by L. helveticus followed a Michaelis-Menten-type mechanism with K S at half-saturation=0.22±0.01 g/l. The maximum specific lactose uptake rate for growing cells, q S,max, varied between 4.32±0.02 g lactose g cells-1 h-1 and 4.89 ±0.02 g lactose g cells-1 h-1. The initial specific lactose uptake rate for non-growing cells, q S,0, was found to be approximately 40% of the maximum specific lactose uptake rate for growing cells. Received: 4 October 1995/Received last revision: 23 April 1996/Accepted: 29 April 1996 相似文献
15.
The effect of dilution rate on the production of lactic acid from whey permeate by Lactobacillus helveticus has been investigated. In the first chemostat of a two-stage system, total conversion (98.1%) and maximum lactic acid concentration (43.7 g l−1) were obtained at a dilution rate (DItot) of 0.06 h−1. Maximum volumetric productivities of lactic acid (8.27 g l−1 h−1) and biomass (1.90 g l−1 h−1) occurred at DItot of 0.40 h−1. The fraction of
-lactate in the product was found to increase with dilution rate and reached a maximum of 66% at the same dilution rate. The maximum specific growth rate (μmax) on this medium was 0.7 h−1. A YATP (max) value of 22.4 g dry weight (mol ATP)−1 and a maintenance coefficient of 8.0 mmol ATP (g dry weight h)−1 were determined. The second stage, in series with the first, confirmed these results and further showed that the total residence time could be reduced by 50%, compared with a single chemostat for the same nearly complete level of substrate conversion. 相似文献
16.
Biocatalyst inactivation is inherent to continuous operation of immobilized enzyme reactors, meaning that a strategy must exist to ensure a production of uniform quality and constant throughput. Flow rate can be profiled to compensate for enzyme inactivation maintaining substrate conversion constant. Throughput can be maintained within specified margins of variation by using several reactors operating in parallel but displaced in time. Enzyme inactivation has been usually modeled under non-reactive conditions, leaving aside the effect of substrate and products on enzyme stability. Results are presented for the design of enzyme reactors under the above operational strategy, considering first-order biocatalyst inactivation kinetics modulated by substrate and products. The continuous production of hydrolyzed-isomerized whey permeate with immobilized lactase and glucose isomerase in sequential packed-bed reactors is used as a case study. Kinetic and inactivation parameters for immobilized lactase have been determined by the authors; those for glucose isomerase were taken from the literature. Except for lactose, all other substrates and products were positive modulators of enzyme stability. Reactor design was done by iteration since it depends on enzyme inactivation kinetics. Reactor performance was determined based on a preliminary design considering non-modulated first-order inactivation kinetics and confronted to such pattern. The new pattern of inactivation was then used to redesign the reactor and the process repeated until reactor performance (considering modulation) matched the assumed pattern of inactivation. Convergence was very fast and only two iterations were needed. 相似文献
17.
To evaluate the feasibility of producing kefiran industrially, whey lactose, a by-product from dairy industry, was used as a low cost carbon source. Because the accumulation of lactic acid as a by-product of Lactobacillus kefiranofaciens inhibited cell growth and kefiran production, the kefir grain derived and non-derived yeasts were screened for their abilities to reduce lactic acid and promote kefiran production in a mixed culture. Six species of yeasts were examined: Torulaspora delbrueckii IFO 1626; Saccharomyces cerevisiae IFO 0216; Debaryomyces hansenii TISTR 5155; Saccharomyces exiguus TISTR 5081; Zygosaccharomyces rouxii TISTR 5044; and Saccharomyces carlsbergensis TISTR 5018. The mixed culture of L. kefiranofaciens with S. cerevisiae IFO 0216 enhanced the kefiran production best from 568 mg/L in the pure culture up to 807 and 938 mg/L in the mixed cultures under anaerobic and microaerobic conditions, respectively. The optimal conditions for kefiran production by the mixed culture were: whey lactose 4%; yeast extract 4%; initial pH of 5.5; and initial amounts of L. kefiranofaciens and S. cerevisiae IFO 0216 of 2.1×10(7) and 4.0×10(6)CFU/mL, respectively. Scaling up the mixed culture in a 2L bioreactor with dissolved oxygen control at 5% and pH control at 5.5 gave the maximum kefiran production of 2,580 mg/L in batch culture and 3,250 mg/L in fed-batch culture. 相似文献
18.
A coupled fermentation-pervaporation process was operated continuously with on-line mass spectrometric gas analysis monitoring of product accumulation on both the upstream and the downstream sides of the membrane. Efficient coupling of the fermentation with pervaporation was attained when a steady state of ethanol production and removal was achieved with whey permeate containing high concentrations of lactose (>8%) or by controlled lactose additions that also compensated for loss of liquid due to pervaporation. The combined system consists of a tubular membrane pervaporation module, directly connected to a stirred fermentor to form one circulation loop, kept at 38°C, with both units operating under computer control. Mass spectrometric gas analysis of the CO2 gas evolved in the fermentor and the ethanol and water in the pervaporate on the downstream side of the membrane enabled us to follow the production of ethanol and its simultaneous removal. Membrane selectivity was calculated on-line and served to monitor the functioning of the membrane. Batch-wise-operated fermentation-pervaporation with Candida pseudotropicalis IP-513 yielded over 120 gl–1 of concentrated ethanol solution using supplemented whey permeate containing 16% lactose. A steady state lasting for about 20 h was achieved with ethanol productivity of 20 g h–1 (approx. 4 g l–1 h–1). Membrane selectivity was over 8. Controlled feeding of concentrated lactose suspension in the whey permeate (350 g l–1) resulted in the continuous collection of 120–140 g l–1 of ethanol pervaporate for 5 days, by which time salt accumulation hampered the fermentation. Medium refreshment restored the fermentative activity of the yeast cells and further extended the coupled process to over 9 days (200 h), when reversible membrane fouling occurred. The membrane module was exchanged and the combined process restarted.
Correspondence to: Y. Shabtai 相似文献
19.
Based on the well-known fact thatKluyveromyces
fragilis strains show sub-optimal performance when grown in concentrated whey permeate, previously optimized medium was investigated for possible limitations appearing at high concentrations. Shaken flask cultures showed that no additional vitamin or mineral sources were required when the optimized amount of yeast extract was added to the concentrated permeate. Several aspects of the ethanol inhibition of the growth ofK.
fragilis NRRL 665 were investigated in continuous culture. The maximum ethanol concentration tolerated by this yeast, i.e. 45 g/l, was much lower than commonly reported for other strains. Ethanol and biomass production were also influenced by the increased ethanol concentration of the medium. At 31 g/l of alcohol product yield was reduced to 0.23 g/g whereas biomass yield was 0.05 g/g. Some evidence suggested that residence time and residual lactose concentration played a significant role in modulating the toxic effect of ethanol. 相似文献
20.
A continuous bioreactor where cells were recycled using a cross-flow microfiltration (CFM) membrane plant was investigated for the production of solvents (ABE fermentation) from whey permeate using Clostridium acetobutylicum P262. A tubular CFM membrane plant capable of being backflushed was used.The continuous fermentations were characterized by cyclic solventogenic and acidogenic behaviour, and ultimately degenerated to an acidogenic state. Steady-state solvent production was obtained for only short periods. This degeneration is attributed to the complex morphological behaviour of this strain of organism on this substrate.It is postulated that to achieve steady-state solvent production over extended periods of time, it is necessary to maintain a balance among the various morphological cell forms, i.e. acid-producing vegetative cells, solvent-producing clostridial cells, and inert forms, e.g. spores. 相似文献