首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feather stable isotope composition may not reflect local isoscapes in which they were grown if supplemented with protein of endogenous origin. Thus, feather isotope analysis, combined with knowledge of local isoscapes can be used to infer endogenous nutrient composition to feathers in cases where birds travel to moult. We investigated this possibility in a study of flightless moulting greylag geese Anser anser on the Danish island of Saltholm, which are known to mobilise endogenous protein stores (acquired at previous terrestrial staging locations in Sweden) to reconstitute muscle blocks and organs whilst feeding on a saltmarsh (i.e. marine-influenced) diet with contrasting stable isotope ratios. We used stable isotope (δ13C, δ15N) measurements to test the prediction that new-grown flight feathers would have stable isotope values intermediate between those derived from a purely terrestrial C3 diet and one composed purely of saltmarsh plants. Feather δ13C and δ15N values were intermediate between those expected for feather material derived from local saltmarsh (i.e. exogenous) food items and Swedish terrestrial (endogenous muscle) sources, suggesting a mixing of endogenous and exogenous sources. These results confirm that moult migrant Anatidae exploit body stores to meet specific protein needs during the flightless period of remige regrowth and caution against the use of feather stable isotope ratios as direct indicators of the isotopic environment in which they were regrown, where endogenous contributions may occur.  相似文献   

2.
The analysis of δ 13C and δ 18O in tree-ring archives offers retrospective insights into environmental conditions and ecophysiological processes. While photosynthetic carbon isotope discrimination and evaporative oxygen isotope enrichment are well understood, we lack information on how the isotope signal is altered by downstream metabolic processes.
In Pinus sylvestris , we traced the isotopic signals from their origin in the leaf water ( δ 18O) or the newly assimilated carbon ( δ 13C), via phloem sugars to the tree-ring, over a time-scale that ranges from hours to a growing season.
Seasonally, variable 13C enrichment of sugars related to phloem loading and transport did lead to uncoupling between δ 13C in the tree-ring, and the c i/ c a ratio at the leaf level. In contrast, the oxygen isotope signal was transferred from the leaf water to the tree-ring with an expected enrichment of 27‰, with time-lags of approximately 2 weeks and with a 40% exchange between organic oxygen and xylem water oxygen during cellulose synthesis.
This integrated overview of the fate of carbon and oxygen isotope signals within the model tree species P. sylvestris provides a novel physiological basis for the interpretation of δ 13C and δ 18O in tree-ring ecology.  相似文献   

3.
We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO2 ( δ 13Cl) in the C3 perennial shrub velvet mesquite ( Prosopis velutina ) across flood plain and upland savanna ecosystems in the south-western USA. δ 13Cl of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in δ 13Cl was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. δ 13Cl and the cumulative flux-weighted δ 13C value of photosynthates were positively correlated, suggesting that progressive 13C enrichment of the CO2 evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic 13C discrimination and associated shifts in the δ 13C signature of primary respiratory substrates. The 13C enrichment of dark-respired CO2 relative to photosynthates across habitats and seasons was 4 to 6‰ at the end of the daytime period (1800 h), but progressively declined to 0‰ by pre-dawn (0300 h). The origin of night-time and daytime variations in δ 13Cl is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism.  相似文献   

4.
Leaves of 407 individuals of Reaumuria soongorica (Pall.) Maxim. collected from the major distribution areas were measured to investigate the distribution characteristics of the stable carbon isotope in this desert plant, as well as correlations between δ^13C values and environmental factors. Results showed that δ^13C values in R. soongorica ranged from -22.77‰ to -29.85‰ and that the mean δ^13C value (-26.52‰) was higher than a previously reported δ^13C value for a different desert ecosystem. This indicates that R. soongorica belongs to the C3 photosynthetic pathway and has higher water use efficiency than other species. The correlations between δ^13C values and environmental factors demonstrated that the foliar δ^13C values in R. soongorica increased significantly with decreasing mean annual precipitation and mean relative humidity, and decreased with decreasing duration of sunshine and evaporation. The spatial distribution trend of δ^13C values in R. soongorica was not obvious and there was no significant correlation between the δ^13C values and mean annual temperature. We conclude that different distribution trends in δ^13C values for R. soongorica were likely caused by stomatal limitation rather than by nutrient-related changes in photosynthetic efficiency and that precipitation played an important role in the wide distribution range of R. soongorica. This pattern of δ^13C values for R. soongorica reinforced that it is a super-xerophil in terms of its adaptive strategies to a desert environment.  相似文献   

5.
Abstract. Tree-ring indices (TRIs) of annual growth rings in stems of Douglas-fir ( Pseudotsuga menziesii ) growing near a copper smelter showed reduced growth during two multi-year time periods in the past. These periods coincided with World Wars I and II, which are known to represent periods of particularly high SO2 emissions from the smelter. Reduced growth was correlated with less negative stable carbon isotope composition (δ13C) in cellulose purified from wood formed in such years. Based on current models for 13C/12C in plants, these results indicate that exposure to air pollution resulted in reduced concentration of CO2 in the intercellular air spaces of the needles. This is consistent with the hypothesis that stomatal closure resulted in impaired photosynthesis and reduced growth during past episodes of high air pollution. The pollution-related change in δ13C was superimposed on a change with time in δ13C, independent of growth, by - 1.4 per mil from 1902 to 1984.  相似文献   

6.
Warming climate could affect leaf-level carbon isotope composition (δ13C) through variations in photosynthetic gas exchange. However, it is still unclear to what extent variations in foliar δ13C can be used to detect changes in net primary productivity (NPP) because leaf physiology is only one of many determinants of stand productivity. We aim to examine how well site-mean foliar δ13C and stand NPP co-vary across large resource gradients using data obtained from the Tibetan Alpine Vegetation Transects (1900–4900 m, TAVT). The TAVT data indicated a robust negative correlation between foliar δ13C and NPP across ecosystems (NPP=−2.7224δ13C-67.738, r2=0.60, p<0.001). The mean foliar δ13C decreased with increasing annual precipitation and its covariation with mean temperature and soil organic carbon and nitrogen contents. The results were further confirmed by global literature data. Pooled δ13C data from global literature and this study explained 60% of variations in annual NPP both from TAVT-measures and MODIS-estimates across 67 sites. Our results appear to support a conceptual model relating foliar δ13C and nitrogen concentration (Nmass) to NPP, suggesting that: 1) there is a general (negative) relationship between δ13C and NPP across different water availability conditions; 2) in water-limited conditions, water availability has greater effects on NPP than Nmass; 3) when water is not limiting, NPP increases with increasing Nmass.  相似文献   

7.
Water-use efficiency and stable isotope composition were studied in three tropical tree species. Seedlings of Tectona grandis , Swietenia macrophylla and Platymiscium pinnatum were grown at either high or low water supply, and with or without added fertilizer. These three species previously exhibited low, intermediate and high whole-plant water-use efficiency ( TE ) when grown at high water supply in unfertilized soil. Responses of TE to water and nutrient availability varied among species. The TE was calculated as experiment-long dry matter production divided by cumulative water use. Species-specific offsets were observed in relationships between TE and whole-plant 13C discrimination (Δ13Cp). These offsets could be attributed to a breakdown in the relationship between Δ13Cp and the ratio of intercellular to ambient CO2 partial pressures ( c i/ c a) in P. pinnatum , and to variation among species in the leaf-to-air vapour pressure difference ( v ). Thus, a plot of v · TE against c i/ c a showed a general relationship among species. Relationships between δ 18O of stem dry matter and stomatal conductance ranged from strongly negative for S. macrophylla to no relationship for T. grandis . Results suggest inter-specific variation among tropical tree species in relationships between stable isotope ratios ( δ 13C and δ 18O) and the gas exchange processes thought to affect them.  相似文献   

8.
Stable carbon isotope composition (δ13C) of dry matter has been widely investigated as a selection tool in cereal breeding programmes. However, reports on the possibilities of using stable oxygen isotope composition (δ18O) as a yield predictor are very scarce and only in the absence of water stress. Indeed, it remains to be tested whether changes in phenology and stomatal conductance in response to water stress overrule the use of either δ13C or δ18O when water is limited. To answer this question, a set of 24 genotypes of bread wheat ( Triticum aestivum ) were assayed in two trials with different levels of deficit irrigation and a third trial under rainfed conditions in a Mediterranean climate (northwest Syria). Grain yield (GY) and phenology (duration from planting to anthesis and from anthesis to maturity) were recorded, and the δ13C and δ18O of grains were analysed to assess their suitability as GY predictors. Both δ13C and δ18O showed higher broad-sense heritabilities ( H 2) than GY. Genotype means of GY across trials were negatively correlated with δ13C, as previously reported, but not with δ18O. Both isotopes were correlated with grain filling duration, whereas δ18O was also strongly affected by crop duration from planting to anthesis. We concluded that δ18O of grains is not a proper physiological trait to breed for suboptimal water conditions, as its variability is almost entirely determined by crop phenology. In contrast, δ13C of grains, despite being also affected by phenology, still provides complementary information associated with GY.  相似文献   

9.
1. We made an empirical test of a recent proposal that feeding niche widths might be determined as variance of stable isotope values. We determined δ 13C and δ 15N values of perch ( Perca fluviatilis ), roach ( Rutilus rutilus ) and their prey from a biomanipulated lake, when the mass removal of fish led to reduced inter- and intra-specific competition and increases in zooplankton abundance and body size.
2. After the first fish removals, both perch and roach mean δ 13C values decreased and mean δ 15N values increased, indicating a greater diet contribution from pelagic sources.
3. Variances of both δ 13C and δ 15N values first increased in both fish populations, indicating a wider food spectrum and expanded feeding niche width following reduced fish abundances. Observed changes were greater for the perch population than for roach.
4. In 2006, the perch population abruptly changed its diet so that most individuals were primarily consuming the abundant young-of-the-year fish, and this was reflected in significantly reduced variances of both δ 13C and δ 15N values.
5. We conclude that isotopic variance can indeed reflect changes in feeding niche width and offers a promising way to study such general ecological concepts.  相似文献   

10.
The sloughed skin from three captive manatees at Lowry Park Zoological Garden (Tampa, Florida) was examined over a period of one year to determine its stable carbon isotopic composition (δ13C). The food consumed by these manatees in a controlled diet was also sampled and its δ13C values determined. The sloughed skin δ13C values from the captive manatees were enriched by an average of +4.1%0 relative to lettuce (generally >98% of the diet) the animals consumed. δ13C values of the skin were shown to be related to changes in δ13C values of the lettuce.
The stable carbon isotopic composition of internal tissues (liver, kidney, and blubber) and skin from dead, stranded manatees was also determined. These values were compared to values of vegetation that manatees are known to eat in the wild. The δ13C values of the internal tissues and skin of wild manatees were consistent with the range of δ13C values of their expected diet.  相似文献   

11.
In the present study, profiles of stable isotope composition were characterized for two species with partially migratory populations in rivers along the latitudinal gradient of Patagonia, brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss . The effects of factors ( e.g. ontogeny of fishes, location, species and fasting) that may influence the stable isotope analysis (SIA) were evaluated, as was SIA evaluated as a tool to assign individual fish to their corresponding ecotype. Anadromous fishes exhibited enriched δ15N (15·2 ± 1·0‰; mean ± s . d .) and δ13C (−19·2 ± 1·3‰) relative to resident fishes'δ15N (8·8 ± 1·1‰) and δ13C (−23·2 ± 2·5‰). For both species, the difference in δ15N was larger between resident (range 6·8–10·7‰) and anadromous (range 14·3–17·8‰) fishes than that in δ13C. Values of δ13C, while not as dramatically contrasting in rainbow trout, provided a powerful anadromy marker for brown trout in the region. Increases were found in both δ15N and δ13C during the spawning migration of anadromous rainbow trout, most likely due to fasting. Differences in stable isotopes between location, size and species were found, suggesting different stable isotopes base levels in freshwater environments and different trophic levels and feeding location of anadromous populations. The SIA was demonstrated as a powerful tool for ecotype discrimination in Patagonian Rivers, overriding any effect of sampling location, size or species.  相似文献   

12.
Carbon isotope ratio of leaf dry matter, δ 13C, was measured on species occurring within Baiyin desert community, consisting of valley, slope and ridge microhabitats, and within Shandan desert community, consisting of Gobi desert and seasonal flooded creek microhabitats, in Northwest China. δ 13C of C3 species increased with a decrease in soil water availability, suggesting that water-use efficiency (WUE) increased with decreasing soil moisture, whereas for all C4 species, δ 13C tended to decrease with decreasing soil water availability, suggesting that WUE also increased with decreasing soil moisture. Above results indicated that water-use pattern was conservative under drought for C4 and C3 plants. In this present study, C4 species' occurrences within different microhabitats were investigated and C4 plants were observed to be absent and/or scarce within relatively lower soil moisture microhabitats, whereas they occurred and/or even had a high abundance within relatively higher soil moisture microhabitats, suggesting limited moisture available was a key factor of limiting C4 distribution in arid region of Northwest China.  相似文献   

13.
Stable carbon (δ13C) and nitrogen (δ15N) isotopes were employed to elucidate energy flows and trophic interactions in Lake Apopka, a hypereutrophic lake in central Florida, U.S.A. Isotope compositions of lake biota ranged from −27·1 to −3·0‰ for δ13C, and from 3·7 to 13·9‰ for δ15N. The food web was based primarily on plankton production with diatoms, Microcystis and zooplankton dominating the diet of fish. Carbon isotope evidence showed that pico- and nano-phytoplankton were not a direct carbon source for fish, but were important to zooplankton. δ15N mass balance estimates indicated that planktivorous fish obtained 48–85% of their diets from zooplankton. The ∼3‰ range of δ15N in gizzard shad reflected increasing dependence on zooplankton as fish grew whereas the positive relationship between total length and δ15N of largemouth bass reflected increasing predation on larger planktivorous fish with growth. The broad ranges of δ13C (−25·9 to −9·5‰) and δ15N (5·8 to 14·4‰) of blue tilapia were indicators of diet diversity. Two presumed omnivores (brown bullhead and white catfish) and piscivores (black crappie, largemouth bass and Florida gar) were found to depend on planktivorous fish. However, stable isotope data revealed no trophic links between blue tilapia, an abundant fish in the near-shore area, and piscivores.  相似文献   

14.
Stable isotope (δ15N and δ13C) values of individual tooth annuli of female Steller sea lions ( n = 120) collected from the 1960s through the 1980s were used for retrospective analyses of temporal changes in food webs in the Gulf of Alaska and North Pacific Ocean. We also examined isotopically contour feathers of tufted puffins ( n = 135) and crested auklets ( n = 37) through this period to test for broader isotopic patterns indicative of whole food web changes. Steller sea lions decreased slightly in δ13C and increased in δ15N values, suggesting an increasing trophic level and change in foraging location or oceanographic isotopic signature. Steller sea lion first and second tooth annuli were enriched in 15N and depleted in 13C compared with subsequent annuli, indicating the effects of maternal influence through weaning. The general pattern of increasing δ15N values among Steller sea lions supports previous conclusions regarding a reduction or redistribution of forage fishes and an increase of demersal and semi-demersal species in the North Pacific ecosystem. There were no significant changes in δ15N values for either bird species. However, δ13C values in both bird species again suggested changes in foraging location or a shift in oceanographic currents.  相似文献   

15.
The diet of the dusky grouper Epinephelus marginatus , from the Balearic Islands, western Mediterranean, consisted primarily of crustaceans, molluscs and fishes, but diet composition varied with body size. The smaller dusky groupers (<300 mm L T) fed primarily on crustaceans, and particularly on brachyurans, which accounted for 46% of the prey identified. As dusky groupers grew, cephalopods became increasingly important and constituted 10 to 40% of the prey identified in subadult and adult specimens. The largest dusky groupers fed primarily on fishes that represented 40·9% of prey identified. These shifts in diet were accompanied by a positive selection of increasingly large prey and by an expansion of trophic niche. δ 15N values of dusky grouper white muscle ranged from 8·8 to 13·1% and 71% of the variation in δ 15N was explained by differences in dusky grouper size. δ 13C values ranged from – 17·9 to – 15·9%, and no significant body size effect on δ 13C was detected. Stomach content and 13C values indicated that from 1 year old, the diet of E. marginatus was based on the benthic food web. The enrichment in δ 15N registered from juvenile to large males was c . 3·8%. Overall, there was good agreement between gut content and stable isotope data indicating that the latter may be useful as a tool in trophic studies in marine protected areas where sampling for fishes is not allowed.  相似文献   

16.
Terrestrial arthropods are important components of boreal ecosystems but relatively little is known about their trophic structure within communities. We measured δ13C and δ15N values in a broad range of arthropod taxa (Coleoptera, Diptera, Ephemeroptera, Homoptera, Hymenoptera, Lepidoptera, Odonata, Orthoptera, Araneae) from boreal forest in Prince Albert National Park, Saskatchewan, Canada. Isotopic measurements supported previous conventional investigations on foraging niches based on stomach content analysis and direct feeding observations but additional, new information was also obtained using the stable isotope approach. Significant differences were observed in both δ15N and δ13C values between various orders and families or superfamilies within orders. Higher variance in stable isotope values for scavengers (e.g. carrion beetles; Coleoptera, Silphidae) and generalists (e.g. ground beetles; Coleoptera, Carabidae) was found compared to specialists (e.g. grasshoppers; Orthoptera). Consistent isotopic differences between terrestrial and aquatic species were not found. However, aquatic insect δ13C values tended to be lower than those of their terrestrial counterparts. We discuss the potential for using stable isotope methods to reconstruct trophic linkages and interaction involving arthropods.  相似文献   

17.
The natural abundance of 13C and 15N was measured in basidiocarps of at least 115 species in 88 genera of ectomycorrhizal, wood-decomposing and litter-decomposing fungi from Japan and Malaysia. The natural abundance of 13C and 15N was also measured in leaves, litter, soil and wood from three different sites. 15N and 13C were enriched in ectomycorrhizal and wood-decomposing fungi, respectively, relative to their substrates. Ectomycorrhizal and wood-decomposing fungi could be distinguished on the basis of their δ13C and δ15N signatures. Although there was high variability in the isotopic composition of fungi, the following isotope- enrichment factors (ε, mean±SD) of the fungi relative to substrates were observed:
εectomycorrhizal fungi/litter = 6.1±0.4‰15N
εectomycorrhizal fungi/wood = 1.4±0.8‰13C
εwood-decomposing fungi/wood = −0.6±0.7‰15N
εwood-decomposing fungi/wood = 3.5±0.9‰13C
The basis of isotope fractionation in C metabolism from wood to wood-decomposing fungus is discussed.  相似文献   

18.
We developed and applied an ecosystem-scale model that calculated leaf CO2 assimilation, stomatal conductance, chloroplast CO2 concentration and the carbon isotope composition of carbohydrate formed during photosynthesis separately for sunlit and shaded leaves within multiple canopy layers. The ecosystem photosynthesis model was validated by comparison to leaf-level gas exchange measurements and estimates of ecosystem-scale photosynthesis from eddy covariance measurements made in a coastal Douglas-fir forest on Vancouver Island. A good agreement was also observed between modelled and measured δ 13C values of ecosystem-respired CO2 ( δ R). The modelled δ R values showed strong responses to variation in photosynthetic photon flux density (PPFD), air temperature, vapour pressure deficit (VPD) and available soil moisture in a manner consistent with leaf-level studies of photosynthetic 13C discrimination. Sensitivity tests were conducted to evaluate the effect of (1) changes in the lag between the time of CO2 fixation and the conversion of organic matter back to CO2; (2) shifts in the proportion of autotrophic and heterotrophic respiration; (3) isotope fractionation during respiration; and (4) environmentally induced changes in mesophyll conductance, on modelled δ R values. Our results indicated that δ R is a good proxy for canopy-level C c/ C a and 13C discrimination during photosynthetic gas exchange, and therefore has several applications in ecosystem physiology.  相似文献   

19.
We used stable carbon (δ13C) and nitrogen (δ15N) isotopes to assess the importance of benthic algae for the zooplankton individual growth in winter in a shallow, clear subarctic lake. The δ13C values of calanoid ( Eudiaptomus graciloides ) and cyclopoid ( Cyclops scutifer ) zooplankton in autumn suggest a food resource of pelagic origin during the ice-free period. The zooplankton δ13C values were high in spring compared to autumn. E. graciloides did not grow over winter and the change in δ13C was attributed to a decrease in lipid content during the winter. In contrast, the increase in δ13C values of C. scutifer over the winter was explained by their growth on organic carbon generated by benthic algae. The δ15N of the C. scutifer food resource during winter was low compared to δ15N of the benthic community, suggesting that organic matter generated by benthic algae was mainly channelled to zooplankton via 15N-depleted heterotrophic bacteria. The results demonstrate that benthic algae can sustain zooplankton metabolic demands and growth during long winters, which, in turn, may promote zooplankton growth on pelagic resources during the summer. Such multi-chain omnivory challenges the view of zooplankton as mainly dependent on internal primary production and stresses the importance of benthic resources for the productivity of plankton food webs in shallow lakes.  相似文献   

20.
Stable nitrogen (δ15N), carbon (δ13C) and hydrogen (δD) isotope profiles in feathers of nine migratory bird species trapped in Kenya were examined to test the extent to which they were segregated, geographically or by habitat, during an earlier autumn migration stopover in northeast Africa. We examined whether isotopic differences between species varied between years, and whether the isotope profiles of individual species appeared to be consistent. The relationship between mean feather δ13C, δ15N and δD assorted the migrants into several clustered groups. Similar feather isotope values among successive years revealed that each species tended to return to the same or similar stopover areas and selected habitat and diet that generated similar isotopic signatures. Possible explanations are discussed for the existence of these isotopic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号