首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shear stress, a mechanical force created by blood flow, is known to affect the developing cardiovascular system. Shear stress is a function of both shear rate and viscosity. While established techniques for measuring shear rate in embryos have been developed, the viscosity of embryonic blood has never been known but always assumed to be like adult blood. Blood is a non-Newtonian fluid, where the relationship between shear rate and shear stress is nonlinear. In this work, we analyzed the non-Newtonian behavior of embryonic chicken blood using a microviscometer and present the apparent viscosity at different hematocrits, different shear rates, and at different stages during development from 4 days (Hamburger-Hamilton stage 22) to 8 days (about Hamburger-Hamilton stage 34) of incubation. We chose the chicken embryo since it has become a common animal model for studying hemodynamics in the developing cardiovascular system. We found that the hematocrit increases with the stage of development. The viscosity of embryonic avian blood in all developmental stages studied was shear rate dependent and behaved in a non-Newtonian manner similar to that of adult blood. The range of shear rates and hematocrits at which non-Newtonian behavior was observed is, however, outside the physiological range for the larger vessels of the embryo. Under low shear stress conditions, the spherical nucleated blood cells that make up embryonic blood formed into small aggregates of cells. We found that the apparent blood viscosity decreases at a given hematocrit during embryonic development, not due to changes in protein composition of the plasma but possibly due to the changes in cellular composition of embryonic blood. This decrease in apparent viscosity was only visible at high hematocrit. At physiological values of hematocrit, embryonic blood viscosity did not change significantly with the stage of development.  相似文献   

2.
Red blood cell orientation in orbit C = 0.   总被引:4,自引:0,他引:4       下载免费PDF全文
M Bitbol 《Biophysical journal》1986,49(5):1055-1068
Two modes of behavior of single human red cells in a shear field have been described. It is known that in low viscosity media and at shear rates less than 20 s-1, the cells rotate with a periodically varying angular velocity, in accord with the theory of Jeffery (1922) for oblate spheroids. In media of viscosity greater than approximately 5 mPa s and sufficiently high shear rates, the cells align themselves at a constant angle to the direction of flow with the membrane undergoing tank-tread motion. Also, in low viscosity media, as the shear rate is increased, more and more cells lie in the plane of shear, undergoing spin with their axes of symmetry aligned with the vorticity axis of the shear field in an orbit "C = 0" (Goldsmith and Marlow, 1972). We have explored this latter phenomenon using two experimental methods. First, the erythrocytes were observed in the rheoscope and their diameters measured. Forward light scattering patterns were correlated with the red cell orientation mode. Light flux variations after flow onset or stop were measured, and the characteristic times of erythrocyte orientation and disorientation were assessed. The characteristic time of erythrocyte orientation in Orbit C = 0 is proportional to the inverse of the shear rate. The corresponding coefficient of proportionality depends on the suspending medium viscosity eta o. The disorientation time tau D, after flow has been stopped, is such that the ratio tau D/eta o is independent of the initial applied shear stress. However, tau D is much shorter than one would expect if pure Brownian motion were involved. The proportion of erythrocytes in orbit C = 0 was also measured. It was found that this proportion is a function of both the shear rate and eta o. At low values of eta o, the proportion increases with increasing shear rate and then reaches a plateau. For higher values of eta o (5 to 10 mPa s), the proportion of RBC in orbit C = 0 is a decreasing function of the shear stress. A critical transition between orbit C = 0 and parallel alignment was observed at high values of eta o, when the shear stress is on the order of 1 N/m2. Finally, the effect of altering membrane viscoelastic properties (by heat or diamide treatment) was tested. The proportion of oriented cells is a steep decreasing function of red cell rigidity.  相似文献   

3.
Ultrasonic velocity and attenuation measurements were performed on mango juices at 25 MHz in order to estimate longitudinal viscosity. Juices were extracted from fruits, removed periodically from fruit batches undergoing ripening for 3 weeks under controlled conditions. The correlation between longitudinal viscosity and apparent dynamic shear viscosity, obtained from flow tests, showed that up to 12–13 wt.% of Soluble Solids Content (SSC), the juices presented a Newtonian behavior. In this case the relation between longitudinal viscosity measured by ultrasound and shear viscosity measured by flow tests was very simple leading to the conclusion that ultrasound could replace rotating viscosimeters for specific applications. Over this limit, the results were also clearly correlated but the correlation depended on the shear rate because of the shear thinning behavior of the juices certainly due to soluble pectins. The use of longitudinal ultrasonic waves as a tool for viscosity determination on large batches of samples is discussed at the end of this communication.  相似文献   

4.
The objective of this study was to quantify the effect of algal biomass concentration on the rheology of the algal culture broth. Batch cultivations of Chlorella minutissima were carried out with air and carbon dioxide in a stirred tank bioreactor with a working volume of 1.8 L. The apparent viscosity of the culture broth was significantly affected by the cell mass concentrations in the bioreactor. Culture broth containing 50 g/L cell mass from air fed was found to exhibit an apparent viscosity of 1.52 mPa.s. The apparent viscosity of the carbon‐dioxide‐fed cultivations was found to increase by 20% at a shear rate of 100 s?1. The flow behavior of the system was adequately described by the Herschel–Bulkley model with a small yield stress.  相似文献   

5.
Tank-treading (TT) motion is established in optically trapped, live red blood cells (RBCs) held in shear flow and is systematically investigated under varying shear rates, temperature (affecting membrane viscosity), osmolarity (resulting in changes in RBC shape and cytoplasmic viscosity), and viscosity of the suspending medium. TT frequency is measured as a function of membrane and cytoplasmic viscosity, the former being four times more effective in altering TT frequency. TT frequency increases as membrane viscosity decreases, by as much as 10% over temperature changes of only 4°C at a shear rate of ∼43 s−1. A threshold shear rate (1.5 ± 0.3 s−1) is observed below which the TT frequency drops to zero. TT motion is also observed in shape-engineered (spherical) RBCs and those with cholesterol-depleted membranes. The TT threshold is less evident in both cases but the TT frequency increases in the latter cells. Our findings indicate that TT motion is pervasive even in folded and deformed erythrocytes, conditions that occur when such erythrocytes flow through narrow capillaries.  相似文献   

6.
Hydroxyethyl starch (HES) has often been used as a plasma expander, but questions still remain concerning the mechanisms by which it produces changes in the rheological properties of blood and erythrocyte (RBC) suspensions under various flow conditions. The present investigation has shown that the dynamic viscosity of HES (232,000 and 565,000 daltons) solutions rises in a nonlinear fashion with increasing HES concentration, and for a given concentration of HES exhibits Newtonian behavior at shear rates between 0.15 to 124 sec-1. At low (less than 0.9 sec-1) shear rates the apparent viscosity of a 40% RBC suspension increases with lower concentrations of HES because of RBC aggregation. At higher concentrations of HES, increases in suspension viscosity are due to an increase in the viscosity of the continuous phase since the RBC are largely disaggregated. At high (greater than 36 sec-1) shear rates the relative viscosity (eta/eta O) of RBC suspensions slowly decreases with increasing HES concentration. At low shear rates eta/eta O increases and then decreases with increasing HES concentration. Evidence of the concentration-dependent effects of HES on RBC aggregation is provided not only by the viscometric analysis but also from measurements of erythrocyte sedimentation rate (ESR) and the zeta sedimentation ratio (ZSR). HES is a more potent aggregating agent in phosphate buffered saline (PBS) than it is in plasma. Polymer size has only a slight effect on the extent of RBC aggregation produced, but does have a significant effect on the concentration of polymer at which maximum aggregation occurs. The viscosity-corrected electrophoretic mobility of RBC in HES rises monotonically with the concentration of HES in the suspending medium. Decreases in the extent of RBC aggregation with increasing polymer concentrations probably result from an increase in the electrostatic repulsive forces between the cells.  相似文献   

7.
L Dintenfass 《Biorheology》1990,27(2):149-161
Although the question whether the red cell is fluid or solid has been discussed since 17th century, it was the author's measurement of the relative viscosity of blood in 1960's that supplied the first direct evidence that the red cell interior is fluid. Furthermore, through his application of the equations of Taylor and, later, Oldroyd, to this problem, it became evident that, for the red cell to exhibit fluid-drop-like behavior, the membrane must also be fluid. This led to his concept of the red cell membrane as a complex two-phase structure (lipoprotein micelles and two-dimensional protein networks) which was similar to the one accepted nearly a decade later. The requirements of the theory of ideal emulsions that the shear stress be transmitted into the cell interior via low viscosity membrane, are met in the later work of other investigators using the concept of a tank-treading membrane having viscoelastic properties. This paper reviews the original work of the author which led to the development of an equation for the relative viscosity of blood as a function of volume concentration, C: nr = (1 - TkC)-2.5, valid at shear rates above 180 sec-1, in which T is the Taylor factor which gives a measure of fluidity of the red cell, and k is a plasma trapping factor. Both T and k increase with increasing rigidity of the red cell. Finally, the effect of the membrane viewed as a complex two-phase fluid, on the rheology of the red cell is discussed.  相似文献   

8.
《Biorheology》1996,33(4-5):319-332
The shear and extensional viscosity characteristics have been compared for hyaluronan and two samples of a cross-linked derivative, hylan, of different molecular weights. While shear thinning behavior was observed for all systems in shear flow, strain thickening was observed in extensional flow for the relatively dilute systems. However, there was a progressive transition to shear thinning behavior as the polymer concentration was increased. It is evident from the results that the shear flow techniques alone provide an incomplete picture of the rheological properties of these materials and that extensional flow characteristics are potentially dominant. For example, at relatively high deformation rates of 500 s1 and above, our results show that the extensional viscosities of aqueous solutions of the various polymers are at least two orders of magnitude greater than their corresponding shear flow viscosities. The incremental differences in viscosity with concentration increased with increasing molecular mass of the polymers and were greater in exensional flow than shear flow. These results demonstrate that the dynamic network structure formed by the higher molecular mass hylans offer potentially better physical and mechanical properties for viscosupplementation of diseased osteoarthritis joints compared with the parent hyaluronan.  相似文献   

9.
Membrane viscoelasticity.   总被引:10,自引:3,他引:7       下载免费PDF全文
In this paper, we develop a theory for viscoelastic behavior of large membrane deformations and apply the analysis to the relaxation of projections produced by small micropipette aspiration of red cell discocytes. We show that this relaxation is dominated by the membrane viscosity and that the cytoplasmic and extracellular fluid flow have negligible influence on the relaxation time and can be neglected. From preliminary data, we estimate the total membrane "viscosity" when the membrane material behaves in an elastic solid manner. The total membrane viscosity is calculated to be 10(-3) dyn-s/cm, which is a surface viscosity that is about three orders of magnitude greater than the surface viscosity of lipid membrane components (as determined by "fluidity" measurements). It is apparent that the lipid bilayer contributes little to the fluid dynamic behavior of the whole plasma membrane and that a structural matrix dominates the viscous dissipation. However, we show that viscous flow in the membrane is not responsible for the temporal dependence of the isotropic membrane tension required to produce lysis and that the previous estimates of Rand, Katchalsky, et al., for "viscosity" are six to eight orders of magnitude too large.  相似文献   

10.
Using a cone-on-plate mechanical spectrometer, we have measured the linear and non-linear rheological properties of cartilage proteoglycan solutions at concentrations similar to those found in situ. Solutions of bovine nasal cartilage proteoglycan subunits (22S) and aggregates (79S) were studied at concentrations ranging from 10 to 50 mg ml-1. We determined: (1) the complex viscoelastic shear modulus G (omega) under small amplitude (0.02 radians) oscillatory excitation at frequencies (omega) ranging from 1.0 to 20.0 Hz, (2) the non-linear shear rate (gamma) dependent apparent viscosity napp (gamma) in continuous shear, and (3) the non-linear shear rate dependent primary normal stress difference sigma 1 (gamma) in continuous shear. Both the apparent viscosity and normal stress difference were measured over four decades of shear rates ranging from 0.25 to 250 s-1. Analysis of the experimental results were performed using a variety of materially objective non-linear viscoelastic constitutive laws. We found that the non-linear, four-coefficient Oldroyd rate-type model was most effective for describing the measured flow characteristics of proteoglycan subunit and aggregate solutions. Values of the relaxation time lambda 1, retardation time lambda 2, zero shear viscosity no, and nonlinear viscosity parameter muo were computed for the aggregate and subunit solutions at all of the solute concentrations used. The four independent material coefficients showed marked dependence on the two different molecular conformations, i.e. aggregate or subunit, of proteoglycans in solution.  相似文献   

11.
A numerical simulation of the phase separation in binary lipid membrane under the effect of stationary shear flow is performed. We numerically solved the modified two-dimensional time-dependent Ginzburg–Landau (TDGL) equations with an external velocity term, employing the CDS (i.e., Cell Dynamical System) technique. In the present simulation, stationary shear flows with different shear rates are taken into account. The evolution process of the phase separation is illustrated macroscopically via the snapshot figures and simulated scattering patterns at several typical moments. For each case, the growth exponents of the characteristic domain sizes in both directions parallel and perpendicular to the flow are studied, and the domain area as well. Also, the behavior of the excess viscosity has been investigated, which is a peculiar rheological indicator of such a membrane system with domain structures.  相似文献   

12.
The membrane shear elastic modulus (mu) and the time constant for extensional shape recovery (tc) were measured for normal, control human red blood cells (RBC) and for RBC heat treated (HT) at 48 degrees C. Three separate methods for the measurement of mu were compared (two used a micropipette and one employed a flow channel), and the membrane viscosity (n) was calculated from the relation n = mu. tc. The deformability of HT and control cells was evaluated using micropipette techniques, and the bulk viscosity of RBC suspensions at 40% hematocrit was measured. The shear elastic modulus, or "membrane rigidity", was more than doubled by heat treatment, although both the absolute value for mu and the estimate of the increase induced by heat treatment varied depending on the method of measurement. Heat treatment caused smaller increases in membrane viscosity and in membrane bending resistance, and only minimal changes in cell geometry. The deformability of HT cells was reduced: 1) the pressure required for cell entry (Pe) into 3 micrometers pipettes was increased, on average, by 170%; 2) at an aspiration pressure (Pa) exceeding Pe, longer times were required for cell entry into the same pipettes. However, when Pa was scaled relative to the mean entry pressure for a given sample (i.e, Pa/Pe), entry times were similar for control and HT cells. Bulk viscosity of HT RBC suspensions was elevated by approximately 12% on average (shear rates 75 to 1500 inverse seconds). These findings suggest that alteration of RBC membrane mechanical properties, similar to those induced by heat treatment, would most affect the in vivo circulation in regions where vessel dimensions are smaller than cellular diameters.  相似文献   

13.
Passive mechanical behavior of human neutrophils: power-law fluid.   总被引:5,自引:2,他引:3       下载免费PDF全文
M A Tsai  R S Frank    R E Waugh 《Biophysical journal》1993,65(5):2078-2088
The mechanical behavior of the neutrophil plays an important role in both the microcirculation and the immune system. Several laboratories in the past have developed mechanical models to describe different aspects of neutrophil deformability. In this study, the passive mechanical properties of normal human neutrophils have been further characterized. The cellular mechanical properties were assessed by single cell micropipette aspiration at fixed aspiration pressures. A numerical simulation was developed to interpret the experiments in terms of cell mechanical properties based on the Newtonian liquid drop model (Yeung and Evans, Biophys. J., 56: 139-149, 1989). The cytoplasmic viscosity was determined as a function of the ratio of the initial cell size to the pipette radius, the cortical tension, aspiration pressure, and the whole cell aspiration time. The cortical tension of passive neutrophils was measured to be about 2.7 x 10(-5) N/m. The apparent viscosity of neutrophil cytoplasm was found to depend on aspiration pressure, and ranged from approximately 500 Pa.s at an aspiration pressure of 98 Pa (1.0 cm H2O) to approximately 50 Pa.s at 882 Pa (9.0 cm H2O) when tested with a 4.0-micron pipette. These data provide the first documentation that the neutrophil cytoplasm exhibits non-Newtonian behavior. To further characterize the non-Newtonian behavior of human neutrophils, a mean shear rate gamma m was estimated based on the numerical simulation. The apparent cytoplasmic viscosity appears to decrease as the mean shear rate increases. The dependence of cytoplasmic viscosity on the mean shear rate can be approximated as a power-law relationship described by mu = mu c(gamma m/gamma c)-b, where mu is the cytoplasmic viscosity, gamma m is the mean shear rate, mu c is the characteristic viscosity at characteristic shear rate gamma c, and b is a material coefficient. When gamma c was set to 1 s-1, the material coefficients for passive neutrophils were determined to be mu c = 130 +/- 23 Pa.s and b = 0.52 +/- 0.09 for normal neutrophils. The power-law approximation has a remarkable ability to reconcile discrepancies among published values of the cytoplasmic viscosity measured using different techniques, even though these values differ by nearly two orders of magnitude. Thus, the power-law fluid model is a promising candidate for describing the passive mechanical behavior of human neutrophils in large deformation. It can also account for some discrepancies between cellular behavior in single-cell micromechanical experiments and predictions based on the assumption that the cytoplasm is a simple Newtonian fluid.  相似文献   

14.
A magnetic bead microrheometer has been designed which allows the generation of forces up to 10(4) pN on 4.5 micron paramagnetic beads. It is applied to measure local viscoelastic properties of the surface of adhering fibroblasts. Creep response and relaxation curves evoked by tangential force pulses of 500-2500 pN (and approximately 1 s duration) on the magnetic beads fixed to the integrin receptors of the cell membrane are recorded by particle tracking. Linear three-phasic creep responses consisting of an elastic deflection, a stress relaxation, and a viscous flow are established. The viscoelastic response curves are analyzed in terms of a series arrangement of a dashpot and a Voigt body, which allows characterization of the viscoelastic behavior of the adhering cell surface in terms of three parameters: an effective elastic constant, a viscosity, and a relaxation time. The displacement field generated by the local tangential forces on the cell surface is visualized by observing the induced motion of assemblies of nonmagnetic colloidal probes fixed to the membrane. It is found that the displacement field decays rapidly with the distance from the magnetic bead. A cutoff radius of Rc approximately 7 micron of the screened elastic field is established. Partial penetration of the shear field into the cytoplasm is established by observing the induced deflection of intracellular compartments. The cell membrane was modeled as a thin elastic plate of shear modulus mu * coupled to a viscoelastic layer, which is fixed to a solid support on the opposite side; the former accounts for the membrane/actin cortex, and the latter for the contribution of the cytoskeleton to the deformation of the cell envelope. It is characterized by the coupling constant chi characterizing the elasticity of the cytoskeleton. The coupling constant chi and the surface shear modulus mu * are obtained from the measured displacements of the magnetic and nonmagnetic beads. By analyzing the experimental data in terms of this model a surface shear modulus of mu * approximately 2 . 10(-3) Pa m to 4 . 10(-3) Pa m is found. By assuming an approximate plate thickness of 0.1 micron one estimates an average bulk shear modulus of mu approximately (2 / 4) . 10(-4) Pa, which is in reasonable agreement with data obtained by atomic force microscopy. The viscosity of the dashpot is related to the apparent viscosity of the cytoplasm, which is obtained by assuming that the top membrane is coupled to the bottom (fixed) membrane by a viscous medium. By application of the theory of diffusion of membrane proteins in supported membranes we find a coefficient of friction of bc approximately 2 . 10(9) Pa s/m corresponding to a cytoplasmic viscosity of 2 . 10(3) Pa s.  相似文献   

15.
Single human red cells were suspended in media with viscosities ranging from 12.9 to 109 mPa s and subjected to shear flow ranging from 1/s to 290/s in a rheoscope. This is a transparent cone-plate chamber adapted to a microscope. The motion of the membrane around red cells oriented in a steady-state fashion in the shear field (tank-tread motion) was videotaped. The projected length and width of the cells as well as the frequency of tank-tread motion were measured. One-thousand eight-hundred seventy-three cells of three blood donors were evaluated. The frequency increased with the mean shear rate in an almost linear fashion. The slope of this dependence increased weakly with the viscosity of the suspending medium. No correlation was found between the frequency and four morphological red cell parameters: the projected length and width of the cells as well as the ratio and the square root of the product of these quantities. The energy dissipation within the red cell membrane was estimated based on the measured parameters and compared to the energy dissipation in the undisturbed shear flow. At constant mean shear rate the rise of the energy dissipation with viscosity is slower whereas at constant viscosity the rise with the shear rate is steeper than in the undisturbed shear flow. A fit of the data collected in this work to a theoretical red cell model might allow one to determine intrinsic mechanical constants in the low deformation regime.  相似文献   

16.
In this study, we characterize the shear and extensional rheology of dilute to semidilute solutions of cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIAc). In steady shear flow, the semidilute solutions exhibit shear thinning, and the high-frequency complex modulus measured in small amplitude oscillatory shear flow exhibits the characteristic scaling expected for solutions of semiflexible chains. Flow curves of the steady shear viscosity plotted against shear rate closely follow the frequency dependence of the complex viscosity acquired using oscillatory shear, thus satisfying the empirical Cox-Merz rule. We use capillary thinning rheometry (CaBER) to characterize the relaxation times and apparent extensional viscosities of the semidilute cellulose solutions in a uniaxial extensional flow that mimics the dynamics encountered in the spin-line during fiber spinning processes. The apparent extensional viscosity and characteristic relaxation times of the semidilute cellulose/EMIAc solutions increase dramatically as the solutions enter the entangled concentration regime at which fiber spinning becomes viable.  相似文献   

17.
《Biophysical journal》2022,121(18):3393-3410
In this article, extensive three-dimensional simulations are conducted for tank-treading (TT) red blood cells (RBCs) in shear flow with different cell viscous properties and flow conditions. Apart from recent numerical studies on TT RBCs, this research considers the uncertainty in cytoplasm viscosity, covers a more complete range of shear flow situations of available experiments, and examines the TT behaviors in more details. Key TT characteristics, including the rotation frequency, deformation index, and inclination angle, are compared with available experimental results of similar shear flow conditions. Fairly good simulation-experiment agreements for these parameters can be obtained by adjusting the membrane viscosity values; however, different rheological relationships between the membrane viscosity and the flow shear rate are noted for these comparisons: shear thinning from the TT frequency, Newtonian from the inclination angle, and shear thickening from the cell deformation. Previous studies claimed a shear-thinning membrane viscosity model based on the TT frequency results; however, such a conclusion seems premature from our results and more carefully designed and better controlled investigations are required for the RBC membrane rheology. In addition, our simulation results reveal complicate RBC TT features and such information could be helpful for a better understanding of in vivo and in vitro RBC dynamics.  相似文献   

18.
To develop a highly efficient cell harvest step under time constraint, a novel rotating disk dynamic filtration system was studied on the laboratory scale (0.147-ft.(2) nylon membrane) for concentrating recombinant yeast cells containing an intracellular product. The existing cross-flow microfiltration method yielded pseudo-steady state flux values below 25 LMH (L/m(2). h) even at low membrane loadings (10 L/ft.(2)). By creating high shear rates (up to 120,000(-1)) on the membrane surface using a rotating solid disk, this dynamic filter has demonstrated dramatically improved performance, presumably due to minimal cake buildup and reduced membrane fouling. Among the many factors investigated, disk rotating speed, which determines shear rates and flow patterns, was found to be the most important adjustable parameter. Our experimental results have shown that the flux increases with disk rotating speed, increases with transmembrane pressure at higher cell concentrations, and can be sustained at high levels under constant flux mode. At a certain membrane loading level, there was a critical speed below which it behaved similarly to a flat sheet system with equivalent shear. Average flux greater than 200 LMH has been demonstrated at 37-L/ft.(2) loading at maximum speed to complete sixfold concentration and 15-volume diafiltration for less than 100 min. An order of magnitude improvement over the crossflow microfiltration control was projected for large scale production. This superior performance, however, would be achieved at the expense of additional power input and heat dissipation, especially when cell concentration reaches above 80 g dry cell weight (DCW)/L. Although a positive linear relationship between power input and dynamic flux at a certain concentration factor has been established, high cell density associated with high viscosity impacted adversely on effective average shear rates and, eventually, severe membrane fouling, rather than cake formation, would limit the performance of this novel system. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
Hyperviscosity syndrome (HVS) is characterized by an increase of the blood viscosity by up to seven times the normal blood viscosity, resulting in disturbances to the circulation in the vasculature system. HVS is commonly associated with an increase of large plasma proteins and abnormalities in the properties of red blood cells, such as cell interactions, cell stiffness, and increased hematocrit. Here, we perform a systematic study of the effect of each biophysical factor on the viscosity of blood by employing the dissipative particle dynamic method. Our in silico platform enables manipulation of each parameter in isolation, providing a unique scheme to quantify and accurately investigate the role of each factor in increasing the blood viscosity. To study the effect of these four factors independently, each factor was elevated more than its values for a healthy blood while the other factors remained constant, and viscosity measurement was performed for different hematocrits and flow rates. Although all four factors were found to increase the overall blood viscosity, these increases were highly dependent on the hematocrit and the flow rates imposed. The effect of cell aggregation and cell concentration on blood viscosity were predominantly observed at low shear rates, in contrast to the more magnified role of cell rigidity and plasma viscosity at high shear rates. Additionally, cell-related factors increase the whole blood viscosity at high hematocrits compared with the relative role of plasma-related factors at lower hematocrits. Our results, mapped onto the flow rates and hematocrits along the circulatory system, provide a correlation to underpinning mechanisms for HVS findings in different blood vessels.  相似文献   

20.
Protein solution rheology data in the biophysics literature have incompletely identified factors that govern hydrodynamics. Whereas spontaneous protein adsorption at the air/water (A/W) interface increases the apparent viscosity of surfactant-free globular protein solutions, it is demonstrated here that irreversible clusters also increase system viscosity in the zero shear limit. Solution rheology measured with double gap geometry in a stress-controlled rheometer on a surfactant-free Immunoglobulin solution demonstrated that both irreversible clusters and the A/W interface increased the apparent low shear rate viscosity. Interfacial shear rheology data showed that the A/W interface yields, i.e., shows solid-like behavior. The A/W interface contribution was smaller, yet nonnegligible, in double gap compared to cone-plate geometry. Apparent nonmonotonic composition dependence of viscosity at low shear rates due to irreversible (nonequilibrium) clusters was resolved by filtration to recover a monotonically increasing viscosity-concentration curve, as expected. Although smaller equilibrium clusters also existed, their size and effective volume fraction were unaffected by filtration, rendering their contribution to viscosity invariant. Surfactant-free antibody systems containing clusters have complex hydrodynamic response, reflecting distinct bulk and interface-adsorbed protein as well as irreversible cluster contributions. Literature models for solution viscosity lack the appropriate physics to describe the bulk shear viscosity of unstable surfactant-free antibody solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号