首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major canine cardiopulmonary nerves which arise from the middle cervical and stellate ganglia and the vagi course toward the heart in the dorsal mediastinum where they form, at the base of the heart dorsal to the pulmonary artery and aorta, the dorsal mediastinal cardiac nerves. In addition, the left caudal pole and interganglionic nerves project onto the left lateral side of the heart as the left lateral cardiac nerve. These nerves contain afferent and (or) efferent axons which, upon stimulation, modify specific cardiac regions and (or) systemic pressure. In addition, with the exception of the left lateral cardiac nerve, stimulation of each of these nerves produces compound action potentials in the cranial ends of the majority of the major cardiopulmonary nerves demonstrating that axons in each dorsal mediastinal cardiac nerve interconnect with axons in the majority of the cardiopulmonary nerves. Axons in the left lateral cardiac nerve connect primarily with axons in the left caudal pole and left interganglionic nerves. The dorsal mediastinal nerves project distally onto the heart as coronary nerves accompanying the right or left coronary arteries. These innervated the ventricular myocardium which is supplied by their respective vessels. The left lateral cardiac nerve projects directly onto the lateral epicardium of the left ventricle. The dorsal mediastinal and left lateral cardiac nerves are the major sympathetic cardiac nerves. Thus, the cardiac nerves located in the mediastinum at the base of the heart are not simple extensions of cardiopulmonary nerves, but rather have a unique anatomy and function of their own.  相似文献   

2.
Afferent stimulation of one canine thoracic cardiopulmonary nerve can generate compound action potentials in another ipsilateral cardiopulmonary nerve. These compound action potentials persist after acute decentralization of the middle cervical ganglion, indicating that they result from neural activity in the middle cervical ganglion and thoracic nerves. Changing the frequency of stimulation can alter the compound action potentials, suggesting that temporal facilitation or inhibition occurs in this middle cervical ganglion preparation. The compound action potentials can be modified by stimulation of sympathetic preganglionic fibers and by hexamethonium, atropine, phentolamine, propranolol, and (or) manganese. It thus appears that afferent cardiopulmonary nerves can activate efferent cardiopulmonary nerves via synaptic mechanisms in the stellate and middle cervical ganglia. It also appears that these mechanisms involve adrenergic and cholinergic receptors and are influenced by preganglionic sympathetic fibers arising from the cord.  相似文献   

3.
The effect of stimulation of the developing cardiac sympathetic nerves on the vulnerability to ventricular fibrillation was investigated in 50 puppies 1 to 6 weeks of age. Ventricular fibrillation thresholds were obtained before and during sympathetic nerve stimulation. Stimulation of either stellate ganglion increased ventricular fibrillation threshold, possibly due to diffuse functional innervation in pups. The effect of the left stellate increased progressively with age, whereas the effect of the right, although initially greater than that of the left, did not increase further with age. In contrast, stimulation of the left ventrolateral cardiac nerve, which is locally distributed, resulted in decreased ventricular fibrillation threshold. This decrease was progressively greater with age. The fact that activation of the left stellate ganglion and the left ventrolateral cardiac nerve affects ventricular fibrillation threshold in opposite directions suggests different sympathetically mediated changes on ventricular vulnerability in early life. The differing temporal patterns of maturation and the localized nature of the major distal branch distributions could provide a mechanism for promotion of arrhythmiogenesis under some conditions in early life.  相似文献   

4.
To investigate ventricular tachycardias produced in healthy canine myocardium by stimulation of sympathetic ganglia or cardiac nerves, we simultaneously recorded a surface ECG and 63 ventricular electrograms in anesthetized open-chest dogs. Isochronal and isopotential maps were generated off-line by computer. Ventricular tachycardia with uniform beat-to-beat morphology was induced in 13 or 22 dogs by electrical stimulation of the left stellate ganglion (five experiments), the left middle cervical ganglion (four experiments), the left caudal pole cardiopulmonary nerve (two experiments), or the ventrolateral cardiac nerve (eight experiments). It was not inducible by stimulation of the right-sided major cardiopulmonary nerves or ganglia. In most instances the earliest measured electrical excitation occurred on the posterior aspect of the ventricles. Isochronal maps demonstrated a radial spread of the impulse away from the area of earliest excitation. Changes in the region of earliest excitation and (or) activation pattern were accompanied by changes in QRS morphology. The potential gradients measured between areas displaying positive and negative T waves on the anterior and left lateral aspects of the ventricles were significantly increased by ventrolateral cardiac nerve stimulation. However, the ventricular regions where these potential gradients existed differed from the regions of earliest excitation during ventricular tachycardia. These results demonstrate that the thoracic autonomic nervous system can induce repetitive ventricular excitation originating from consistent loci.  相似文献   

5.
The augmentation of ventricular inotropism induced by electrical stimulation of acutely decentralized efferent sympathetic preganglionic axons was reduced, but still present, following administration of hexamethonium (10 mg/kg i.v.). While hexamethonium continued to be administered, the cardiac augmentations so induced were enhanced significantly following administration of the alpha-adrenergic receptor blocking agent, phentolamine myselate (1 mg/kg i.v.). Stimulation of the sympathetic efferent postganglionic axons in cardiopulmonary nerves induced cardiac augmentations that were unchanged following administration of these agents singly or together. The cardiac augmentations induced by stimulation of efferent preganglionic sympathetic axons were unchanged when phentolamine was administered alone. The augmentations of cardiac inotropism induced by efferent postganglionic sympathetic axonal stimulation were decreased following local administration of the beta-adrenergic antagonist timolol into the ipsilateral stellate and middle cervical ganglia. Thereafter, these augmentations were unchanged following the subsequent intravenous administration of phentolamine. It is concluded that the activation of cardiac neurons in the stellate and middle cervical ganglia by stimulation of efferent preganglionic sympathetic axons can be modified by alpha-adrenergic receptors and that these effects are dependent upon beta-adrenergic receptors, not nicotinic ones, in intrathoracic ganglia.  相似文献   

6.
In 20 anesthetized dogs the thoracic autonomic nerves were carefully exposed in order to determine which produced cardiovascular responses when the afferent or efferent component of each was stimulated. Efferent parasympathetic and sympathetic fibers arise from the caudal cervical ganglion regions bilaterally as well as from the vagus caudally to that ganglion. The majority of negative chromotropic, dromotropic and inotropic fibers arise from the vagus or near the recurrent laryngeal nerves; however, some small parasympathetic fibers also arise from the vagi down to the level of the pulmonary vessels. Efferent sympathetic nerves are relatively large with the exception of the stellate cardiac nerves, and produce specific positive chronotropic or inotropic responses. Afferent fibers are numerous in the recurrent cardiac, innominate, ventromedial and dorsal nerves and not very numerous in both stellate cardiac nerves as well as in the nerves at the level of the pulmonary vessels; thus there are numerous cholinergic and adrenergic efferent fibers which exhibit specific chronotropic or inotropic responses. The correlation between neural anatomy and specific physiological cardiodynamics illustrates beautifully the interrelationship of structure and function which exists within the autonomic nervous system.  相似文献   

7.
Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long-term stimulation in intrathoracic sympathetic neural elements with frequencies as low as 2 Hz may augment the heart as much as higher stimulation frequencies, depending upon the structure stimulated and the cardiovascular parameter monitored.  相似文献   

8.
The localization of the sympathetic postganglionic and parasympathetic preganglionic neurons innervating the monkey heart were investigated through retrograde axonal transport with horseradish peroxidase (HRP). HRP (4 mg or 30 mg) was injected into the subepicardial and myocardial layers in four different cardiac regions. The animals were euthanized 84-96 hours later and fixed by paraformaldehyde perfusion via the left ventricle. The brain stem and the paravertebral sympathetic ganglia from the superior cervical, middle cervical, and stellate ganglia down to the T9 ganglia were removed and processed for HRP identification. Following injection of HRP into the apex of the heart, the sinoatrial nodal region, or the right ventricle, HRP-labeled sympathetic neurons were found exclusively in the right superior cervical ganglion (64.8%) or in the left superior cervical ganglion (35%). Fewer labeled cells were found in the right stellate ganglia. After HRP injection into the left ventricle, labeled sympathetic cells were found chiefly in the left superior cervical ganglion (51%) or in the right superior cervical ganglion (38.6%); a few labeled cells were seen in the stellate ganglion bilaterally and in the left middle cervical ganglion. Also, in response to administration of HRP into the anterior part of the apex, anterior middle part of the right ventricle, posterior upper part of the left ventricle, or sinoatrial nodal region, HRP-labeled parasympathetic neurons were found in the nucleus ambiguus on both the right (74.8%) and left (25.2%) sides. No HRP-labeled cells were found in the dorsal motor nucleus of the vagus on either side.  相似文献   

9.
The effects of electrical stimulation of the stellate ganglia on the arterio-venous concentration differences of neuropeptide Y (NPY)-like immunoreactivity (LI) over the pig heart were studied in vivo in relation to changes in heart rate and left ventricular pressure. Furthermore, the effects of NPY on coronary vascular tone were analysed in vivo and in vitro. Stellate ganglion stimulation at a high frequency (10 Hz) caused a clear-cut, long lasting increase in plasma levels of NPY-LI in the coronary sinus compared to the aorta, suggesting release of this peptide from sympathetic terminals within the heart. The stimulation-evoked overflow of NPY-LI from the heart was enhanced about 3-fold by alpha-adrenoceptor blockade using phenoxybenzamine, suggesting that NPY release is under prejunctional inhibitory control by noradrenaline (NA). Combined alpha- and beta-adrenoceptor blockade abolished most of the positive inotropic response of the heart upon stellate ganglion stimulation, while a considerable positive chronotropic effect remained. After guanethidine treatment, stellate ganglion stimulation still produced a small positive inotropic and chronotropic effect on the heart. The stimulation evoked NPY overflow was markedly reduced by guanethidine indicating an origin from sympathetic nerve terminals. Injection of NPY into the constantly perfused left anterior descending artery in vivo caused a long lasting, adrenoceptor antagonist resistant increase in perfusion pressure, suggesting coronary vasoconstriction. NPY contracted coronary arteries in vitro via a nifedipine-sensitive mechanism. NA dilated coronary vessels both in vivo and in vitro via beta-adrenoceptor activation. It is concluded that sympathetic nerve stimulation increases overflow of NPY-LI from the heart suggesting release from cardiac nerves in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Neuronal activity in the in situ middle cervical ganglion of dogs was investigated using extracellular recording techniques. The recorded action potentials were frequently active during specific phases of the cardiac cycle, particularly during systole, and this activity persisted following acute decentralization of the ganglion. The activity of these action potentials was modified when systemic arterial pressure was altered by isoproterenol, noradrenaline, adrenaline, or partial occlusion of the aorta, whether in the intact or acutely decentralized preparation. These neurons were active between systolic pressures of 70 and 180 mmHg (1 mmHg = 133.322 Pa). Action potentials were frequently modified by mechanical distortion of the superior vena cava, ventricular epicardium, or adventitia of the aorta, whether the preparation was acutely decentralized or not. Seventy percent of these action potentials were unaffected by stimulation (1 ms, 4 V, 0.5 Hz) of a cardiopulmonary nerve and 27% were suppressed by such stimulation. Five of the neurons were activated by such stimulation. It is presumed that the latter neurons had axons in a cardiopulmonary nerve and most likely were efferent sympathetic postganglionic neurons. Sixty-three percent of these spontaneously active phase-locked units were modified by stimulation of a ramus or an ansa. It is postulated that some of the neurons in the middle cervical ganglia can be modified by afferent axons arising from receptors in thoracic organs, in particular from the great vessels and heart, whether in an intact or acutely decentralized preparation. The majority of these neurons are presumed not to be afferent neurons or efferent postganglionic neurons, as they are not activated directly by electrical stimulation of axons in cardiopulmonary nerves. Rather they are presumed to be interneurons. These results lend support to the thesis that considerable integration of neuronal activity related to thoracic cardiovascular dynamics occurs within the middle cervical ganglia of dogs.  相似文献   

11.
Spinal cord stimulation (SCS) applied to the dorsal aspect of the cranial thoracic cord imparts cardioprotection under conditions of neuronally dependent cardiac stress. This study investigated whether neuronally induced atrial arrhythmias can be modulated by SCS. In 16 anesthetized dogs with intact stellate ganglia and in five with bilateral stellectomy, trains of five electrical stimuli were delivered during the atrial refractory period to right- or left-sided mediastinal nerves for up to 20 s before and after SCS (20 min). Recordings were obtained from 191 biatrial epicardial sites. Before SCS (11 animals), mediastinal nerve stimulation initiated bradycardia alone (12 nerve sites), bradycardia followed by tachyarrhythmia/fibrillation (50 sites), as well as tachyarrhythmia/fibrillation without a preceding bradycardia (21 sites). After SCS, the number of responsive sites inducing bradycardia was reduced by 25% (62 to 47 sites), and the cycle length prolongation in residual bradycardias was reduced. The number of responsive sites inducing tachyarrhythmia was reduced by 60% (71 to 29 sites). Once elicited, residual tachyarrhythmias arose from similar epicardial foci, displaying similar dynamics (cycle length) as in control states. In the absence of SCS, bradycardias and tachyarrhythmias induced by repeat nerve stimulation were reproducible (five additional animals). After bilateral stellectomy, SCS no longer influenced neuronal induction of bradycardia and atrial tachyarrhythmias. These data indicate that SCS obtunds the induction of atrial arrhythmias resulting from excessive activation of intrinsic cardiac neurons and that such protective effects depend on the integrity of nerves coursing via the subclavian ansae and stellate ganglia.  相似文献   

12.
Previous reports have shown that activation of left ventricular receptors with sympathetic afferents elicits increases in respiratory output and arterial pressure. The purpose of the present study was to determine whether similar responses are produced by chemical activation of epicardial receptors in the right ventricle. Receptors were stimulated by applying either capsaicin (10 micrograms) or bradykinin (500 ng) to the epicardial surface of the right ventricle in anesthetized cats. Application of either chemical evoked an increase in respiratory output (phrenic nerve activity), a decrease in heart rate, and a nonsignificant increase in arterial pressure in intact cats. However, capsaicin and bradykinin produced significant increases in arterial pressure, heart rate, and respiratory output after bilateral cervical vagotomy. In contrast, a fall in both heart rate and arterial pressure with only small increases in respiratory output were evoked after bilateral removal of the stellate ganglia in cats with intact vagi. Only small responses to the chemical stimulation of right ventricular receptors persisted after combined vagotomy and stellate ganglionectomy. These findings suggest that 1) activation of epicardial receptors with sympathetic afferents originating in the right ventricle causes an increase in cardiorespiratory function, and 2) activation of right ventricular receptors with vagal afferents produces decreases in heart rate and arterial pressure.  相似文献   

13.
By means of V.P. Vorobiov's preparation in complex of the thoracic cavity organs of persons at various age and sex in fetuses, sources of innervation of bronchi and vessels of the pulmonary circulation have been stated. They make the composition of the cardiac nerves getting off the superior, middle cervical, cervico-thoracic (stellate) and from 3 to 5 thoracic nodes of the sympathetic trunk, superior and inferior cardiac branches of the nervus vagus. Connection between the nerves of the bronchi and vessels of the pulmonary circulation with the cardiac and esophageal nerves and formation of interorganic nervous plexuses are demonstrated. Not always the diaphragmal nerve participates in the innervation of the bronchi and pulmonary vessels. In total preparations and flat sections, elective revealing of the nervous elements with Shiff reagent in M. G. Shubich and A. B. Khodos modification and Gomori thiocholine method, makes it possible to follow connections of the pulmonary veins nerves with the left atrium, intrapulmonary connection of the perivascular and peribronchial plexuses, as well as participation of nervous elements of the pulmonary trunk in innervation of the right ventricle walls. There are multiple vegetative communications participating in innervation of the bronchi and vessels of the pulmonary circulation. The relations of the pulmonary nerves with the nerves of other thoracic organs are very complex; this explains the nature of the repercussive reactions of the lungs after surgical interventions performed in the other organs of the thoracic cavity.  相似文献   

14.
Location and numbers of neurons associated with sympathetic innervation of the heart within the right stellate and accessory cervical ganglia, the spinal cord, and spinal ganglia were investigated using horseradish peroxidase retrograde axonal transport techniques in cats. The enzyme was applied to central sections of the anastomosis of the stellate ganglion with the vagus nerve, the inferior cardiac nerve, and the vagosympathetic trunk caudal to the anastomosis. Labeled neurons within the stellate ganglion were located close to the point of departure of the nerves and more thinly distributed in the accessory cervical ganglion. A group of labeled cells was found in the anastomosis itself. Preganglionic neurons associated with sympathetic innervation of the heat were detected at segmental levels T1–T5 in the spinal cord. Labeled neurons were diffusely located in the spinal ganglia, concentrated mainly at levels T2–T4.Medical Institute, Ministry of Public Health of the RSFSR, Yaroslavl'. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 106–111, January–February, 1989.  相似文献   

15.
In acute experiments on anesthetized dogs under open chest conditions, we studied characteristics of the efferent sympathetic influences on the heart and vessels related to realization of cardiogenic depressor vagus-mediated reflexes. Catheterization of the heart cavities and parallel recording of the mass efferent spike activities in the cardiac and vertebral sympathetic nerves and of the pressure in the aortic ventricle of the heart were used. We found that reflex shifts in the spike activity in the cardiac and vertebral nerves elicited by pharmacological stimulation of the left heart (intracoronary injections of veratrine or adrenaline) and by its nidal immune impairment resulting from injection of a cytotoxic serum demonstrate similar direction (a drop in the frequency of the efferent sympathetic activity). Yet, the dynamics of such inhibitory responses to the influence of the same stimulus and their intensity in one nerve or another and those in one and the same nerve under the influence of different stimuli are considerably dissimilar. Thus, realization of vagus-mediated cardiogenic reflexes is characterized by clear heterogeneity of the efferent sympathetic control of different regions of the cardiovascular system. Such a specificity can provide differential regulation of the heart function and functions of the vascular bed related to different cardiogenic influences (both in the norm and under conditions of formation of an injury nidus in the heart).  相似文献   

16.
在46只麻醉兔,记录了经冠脉内注射尼古丁诱发Bezold-Jarisch反射时不同区域交感神经传出放电的变化。肾神经、心脏神经、脾神经、星状神经节-颈神经交通支和颈前神经节的颈外动脉支五个部位的交感性传出放电,在冠脉内注射尼古丁后均减少,其中以肾神经、心脏神经和脾神经的减少更为显著。此结果表明,交感神经传出放电减少所致的总外周阻力降低,在Bezold-Jarisch反射诱发的低血压中起着重要作用。  相似文献   

17.
The purpose of this study was to describe the autonomic innervation of the carotid sinus and heart in the rhesus monkey. Nine male rhesus monkeys (Macaca mulatta) and one male crab-eating macaque (M. fascicularis) were carefully dissected from the origin of the vagus nerves and superior cervical ganglia to the level of the fourth thoracic ganglion. The specimens were either freshly killed or obtained no later than 24 hours post mortem. The macaque monkeys were found to possess an innervation pattern that displayed features common to dog (connections between the vagus nerves and middle cervical ganglia), baboon (distinct cervical sympathetic and cervical vagal nerve trunks), and man (nerves projecting from the middle cervical and stellate ganglia to the heart). Distinct inferior cervical and first thoracic ganglia were never seen, but rather, large and well defined stellate ganglia were found. The macaque innervation pattern, when considered as a whole, most closely resembled the baboon.  相似文献   

18.
To study systolic pressure gradients developed between the left ventricular wall, its chamber, and the aortic root, in one group of dogs left ventricle ventral wall intramyocardial pressure, left ventricular outflow tract pressure, and aorta pressure were compared with aortic flow as well as left ventricular dimension changes during control conditions as well as during positive intropic states induced by isoproterenol, stellate ganglion stimulation, and noradrenaline. In another group of dogs systolic pressures in the ventral wall of the left ventricle, the main portion of the left ventricular chamber, and the aorta were compared with aortic flow during similar interventions, before and after the administration of phentolamine. Pressure gradients between the wall of the left ventricle and the outflow tract of the left ventricle were minimal during control states, but during the three positive inotropic states were increased significantly. In contrast, pressure gradients between the outflow tract of the left ventricle and the aortic root were insignificant during positive inotropic states; those between the wall and main portion of the chamber were only significantly different during left stellate ganglion stimulation. The data derived from these experiments indicate that useful peak power output of the left ventricle (systolic aortic pressure X flow) is unchanged following isoproterenol infusion, but is increased by stellate ganglion stimulation and noradrenaline. The useful peak power output index (an index of left ventricular efficiency derived by dividing useful peak power output by peak intramyocardial pressure) was reduced more by isoproterenol than the other two interventions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The locations, projections, and functions of the intracardiac ganglia are incompletely understood. Immunocytochemical labeling with the general neuronal marker protein gene product 9.5 (PGP 9.5) was used to determine the distribution of intracardiac neurons throughout the cat atria and ventricles. Fluorescence microscopy was used to determine the number of neurons within these ganglia. There are eight regions of the cat heart that contain intracardiac ganglia. The numbers of neurons found within these intracardiac ganglia vary dramatically. The total number of neurons found in the heart (6,274 +/- 1,061) is almost evenly divided between the atria and the ventricles. The largest ganglion is found in the interventricular septum (IVS). Retrogradely labeled fluorescent tracer studies indicated that the vagal intracardiac innervation of the anterior surface of the right ventricle originates predominantly in the IVS ganglion. A cranioventricular (CV) ganglion was retrogradely labeled from the anterior surface of the left ventricle but not from the anterior surface of the right ventricle. These new neuroanatomic data support the prior physiological hypothesis that the CV ganglion in the cat exerts a negative inotropic effect on the left ventricle. A total of three separate intracardiac ganglia innervate the left ventricle, i.e., the CV, IVS, and a second left ventricular (LV2) ganglion. However, the IVS ganglion provides the major source of innervation to both the left and right ventricles. This dual innervation pattern may help to coordinate or segregate vagal effects on left and right ventricular performance.  相似文献   

20.
Electrical stimulation of the afferent components in one cardiopulmonary nerve (the left vagosympathetic complex at a level immediately caudal to the origin of the left recurrent laryngeal nerve) in acutely decentralized thoracic autonomic ganglionic preparations altered cardiac chronotropism and inotropism in 17 of 44 dogs. Since these neural preparations were acutely decentralized, the effects were mediated presumably via intrathoracic autonomic reflexes. The lack of consistency of these reflexly generated cardiac responses presumably were due in part to anatomical variation of afferent axons in the afferent nerve stimulated. As stimulation of the afferent components in the same neural structure caudal to the heart (where cardiopulmonary afferent axons are not present) failed to elicit cardiac responses in any dog, it is presumed that when cardiac responses were elicited by the more cranially located stimulations, these were due to activation of afferent axons arising from the heart and (or) lungs. When cardiac responses were elicited, intramyocardial pressures in the right ventricular conus as well as the ventral and lateral walls of the left ventricle were augmented. Either bradycardia or tachycardia was elicited. Following hexamethonium administration no responses were produced, demonstrating that nicotonic cholinergic synaptic mechanisms were involved in these intrathoracic cardiopulmonary-cardiac reflexes. In six of the animals, when atropine was administered before hexamethonium, reflexly generated responses were attenuated. The same thing occurred when morphine was administered in four animals. In contrast, in four animals following administration of phentolamine, the reflexly generated changes were enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号