首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and biological activity of chloroethyl pyrimidine nucleosides is presented. One of these new nucleosides analogues significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.  相似文献   

2.
Human tumor cells were treated in vitro with combinations of cis- or trans-dichlodiammineplatinum (DDP) and natural nucleosides (thymidine, uridine, cytidine and adenosine). Effects were measured by inhibition of colony-formation (cell survival) and DNA alkaline elution (DNA cross-links). No increments in cell lethality or DNA cross-links were elicited by any combination of trans-DDP and nucleosides. In contrast, every combination of cis-DDP and nucleoside was eminently synergistic with 5- and 10-fold increases in cell lethality over the predicted sum of each agent alone. These increments in cell kill correlated linearly with increases in DNA crosslinks suggesting that the nucleosides interact with cis-DDP to enhance its cytotoxic crosslinking mode of action.  相似文献   

3.
4.
Two nucleoside transport systems have been verified and separated by mating and recombination experiments. The recipient strain was a mutant which is negative for transport of all nucleosides. The two systems differ in specificity and in regulation. One system transports pyrimidine and adenine in specificity and in regulation. One system transports pyrimidine and adenine nucleosides, but not guanine nucleosides. It is regulated by the cytR gene. The other system transports all nucleosides and is regulated by the cytR as well as by the deoR genes. Enzyme assays performed on whole cells of strains, able or unable to transport nucleosides, indicate that the nucleoside catabolizing enzymes are located inside the permeability barrier of the cell.  相似文献   

5.
In this paper, we report that cells undergoing metabolic stress conditions may use the ribose moiety of nucleosides as energy source to slow down cellular damage. In fact, the phosphorolytic cleavage of the N-glycosidic bond of nucleosides generates, without energy expense, the phosphorylated pentose, which through pentose phosphate pathway and glycolysis, can be converted to energetic intermediates. In this respect, nucleosides may be considered as energy source, alternative or supplementary to glucose, which may become of primary importance especially in conditions of cellular stress. In accordance with the role of these compounds in energy repletion, we also show that the uptake of nucleosides is increased when the energetic demand of the cell is enhanced. As cell model, we have used a human colon carcinoma cell line, LoVo, and the depletion of ATP, with a concomitant fall in the cell energy charge, has been induced by exclusion of glucose from the medium and pre-incubation with oligomycin, an inhibitor of oxidative phosphorylation. In these conditions of energy starvation, we show that the uptake of 2'-deoxyadenosine in LoVo cells is significantly enhanced, and that the phosphorylated ribose moiety of inosine can be used for energy repletion through anaerobic glycolysis. Our data support previous reports indicating that the phosphorylated ribose stemming from the intracellular catabolism of nucleosides may be used in eukaryots as energy source, and advance our knowledge on the regulation of the uptake of nucleosides in eukaryotic cells.  相似文献   

6.
The coupling of 4-aminopyrazolo [3, 4-d]pyrimidine with the appropriate thio sugar gave a 3:1 ratio of α,β blocked 4-amino-1-(2-deoxy-4-thio-D-erythropentofuranosyl)- 1H pyrazolo[3,4-d]pyrimidine nucleosides. The mixture was deblocked, both the anomers were separated, and the β-anomer was readily deaminated by adenosine deaminase. The nucleosides have been characterized, and their anomeric configurations have been determined by proton NMR. All three nucleosides were evaluated against a panel of human tumor cell lines for cytotoxicity in vitro. The details of a convenient and high yielding synthesis of these nucleosides are described.  相似文献   

7.
The coupling of 4-aminopyrazolo [3, 4-d]pyrimidine with the appropriate thio sugar gave a 3:1 ratio of alpha,beta blocked 4-amino-1-(2-deoxy-4-thio-D-erythropentofuranosyl)-1H pyrazolo[3,4-d]pyrimidine nucleosides. The mixture was deblocked, both the anomers were separated, and the beta-anomer was readily deaminated by adenosine deaminase. The nucleosides have been characterized, and their anomeric configurations have been determined by proton NMR. All three nucleosides were evaluated against a panel of human tumor cell lines for cytotoxicity in vitro. The details of a convenient and high yielding synthesis of these nucleosides are described.  相似文献   

8.
A series of 4'-C-hydroxymethyl-2'-fluoro-D-arabinofuranosylpurine nucleosides was prepared and evaluated for cytotoxicity. The details of a convenient synthesis of the carbohydrate precursor 4-C-hydroxymethyl-3,5-di-O-benzoyl-2-fluoro-alpha-D-arabinofuranosyl bromide (13) are presented. Proof of the structure and configuration at all chiral centers of the sugars and the nucleosides were obtained by proton NMR. All five target nucleosides were evaluated for cytotoxicity in human tumor cell lines. The 4'-C-hydroxymethyl clofarabine analogue (16beta) showed slight cytotoxicity in CCRF-CEM leukemia cells.  相似文献   

9.
There are two families of nucleoside transporters, concentrative (termed CNTs) and equilibrative (called ENTs). The members of both families mediate the transmembrane transport of natural nucleosides and some drugs whose structure is based on nucleosides. CNT transporters show a high affinity for their natural substrates (with Km values in the low micromolar range) and are substrate selective. In contrast, ENT transporters show lower affinity and are more permissive regarding the substrates they accept. Both types of transporters are tightly regulated in all cell types studied so far, both by endocrine and growth factors and by substrate availability. The degree of cell differentiation and the proliferation status of a cell also affect the pattern of expressed transporters. Although the presence of both types of transporters in the cells of absortive epithelia suggested the possibility of a transepithelial flux of nucleosides, their exact localization in the different plasma membrane domains of epithelial cells had not been demonstrated until recently. Concentrative transporters are found in the apical membrane while equlibrative transporters are located in the basolateral membrane, thus strengthening the hypothesis of a transepithelial flux of nucleosides.  相似文献   

10.
A tissue extract derived from bovine spleen which is an immunosuppressor in vivo inhibits the incorporation of the two DNA pyrimidine nucleosides but does not inhibit the incorporation of purine nucleosides. The results indicate that the immunosuppressive action of the spleen extract is not mediated via inhibition of cell division.  相似文献   

11.
12.
A series of 4'-C-hydroxymethyl-2'-fluoro-D-arabinofuranosylpurine nucleosides was prepared and evaluated for cytotoxicity in human tumor cell lines. A convenient synthesis of the carbohydrate precursor 4-C-hydroxymethyl-3,5-di-O-benzoyl-2-fluoro-alpha-D-arabinofuranosyl bromide (13) was developed. Coupling of 13 with the sodium salt of 2,6-dichloropurine led to five target purine nucleosides.  相似文献   

13.
A tissue extract derived from bovine spleen which is an immunosuppressor in vivo inhibits the incorporation of the two DNA pyrimidine nucleosides but does not inhibit the incorporation of purine nucleosides. the results indicate that the immunosuppressive action of the spleen extract is not mediated via inhibition of cell division.  相似文献   

14.
Thymidine incorporation in nucleoside transport-deficient lymphoma cells   总被引:4,自引:0,他引:4  
Nucleoside transport deficiency in mammalian cells is associated with an inability to transport most nucleosides, growth resistance to a spectrum of cytotoxic nucleosides, and a loss of binding sites for 4-nitrobenzylthioinosine (NBMPR), a potent inhibitor of nucleoside transport. The nucleoside transport-deficient S49 T lymphoma cell line, AE1, however, was almost as capable of incorporating thymidine into TTP as the wild type parent provided thymidine was administered at a sufficiently high concentration. Consequently, AE1 cells were just as sensitive as wild type cells to the toxicity of high thymidine concentrations. In contrast, AE1 cells were highly resistant to almost all other cytotoxic nucleosides including the thymidine analogs, 5-bromodeoxyuridine and 5-fluoro-2'-deoxyuridine 5'-monophosphate. Despite having demonstrable ability to accumulate TTP, AE1 cells were unable to grow on hypoxanthine-amethopterin-thymidine (HAT)-containing medium. This was due to their inability to accumulate sufficient TTP from the low concentrations of thymidine present in HAT medium. AE1 cells possessed an incomplete thymidine transport deficiency, the extent of which was concentration dependent. The residual capacity for thymidine transport present in AE1 cells was insensitive to inhibition by 4-nitrobenzylthioinosine and could account both for their inability to grow on HAT medium and their sensitivity to cytotoxic concentrations of thymidine. Another nucleoside transport-deficient cell line, FURD-80-3-6, was similar to the AE1 cell line in its growth phenotype and NBMPR-binding site deficiency but differed in its decreased growth sensitivity to thymidine. That nucleoside transport deficiencies may vary in their completeness for different nucleosides has significance for the mechanism by which a single transporter can recognize a wide variety of nucleosides.  相似文献   

15.
Abstract

The synthesis and encouraging biological findings with boron-containing nucleosides, such as 5-dihydroxyboryl-2′-deoxyuridine, which could be used for boron neutron capture therapy (BNCT) for the treatment of various malignancies, has provided momentum to synthesize several boron containing nucleosides and oligomers. BNCT is based on the property of the non-radioactive boron-10 isotope to capture low energy neutrons, thereby producing a localized cell-destroying nuclear reaction. Thus, irradiation of tumor cells with neutrons, following incorporation of the boronated nucleoside, would result in the destruction of tumor tissue only. Intracellular phosphorylation by nucleoside kinases, and/or incorporation into the cancer cell DNA as a false nucleotide precursor, followed by irradiation by neutrons, would lead primarily to tumor cell death. The synthetic and biological approaches for boronated pyrimidines, nucleosides, and oligonucleotides for BNCT are reviewed.  相似文献   

16.
Whole cells and isolated membranes of the marine bacterium MB22 converted nucleotides present in the external medium rapidly into nucleosides and then into bases. Nucleosides and purine bases formed were taken up by distinct transport systems. We found a high-affinity common transport system for adenine, guanine, and hypoxanthine, with a Km of 40 nM. This system was inhibited noncompetitively by purine nucleosides. In addition, two transport systems for nucleosides were present: one for guanosine with a Km of 0.8 microM and another one for inosine and adenosine with a Km of 1.4 microM. The nucleoside transport systems exhibited both mixed and noncompetitive inhibition by different nucleosides other than those translocated; purine and pyrimidine bases had no effect. The transport of nucleosides and purine bases was inhibited by dinitrophenol or azide, thus suggesting that transport is energy dependent. Inside the cell all of the substrates were converted mainly into guanosine, xanthine, and uric acid, but also anabolic products, such as nucleotides and nucleic acids, could be found.  相似文献   

17.
Stable resistance to methotrexate has been well characterized after prolonged treatment of the HT-29 colon cancer cell line, but the mechanism of cell survival at the early stages of the drug resistance process still remains unclear. Here, we demonstrate that human cancer cells in vitro are sensitive to methotrexate only above a critical cell culture density, which specifically coincides with their ability to deplete the extracellular nucleosides from a fully supplemented culture medium. At lower cell densities, extracellular nucleosides remain intact and allow salvage nucleotide synthesis that renders cells insensitive to the drug. Consistently, medium conditioned by cells seeded at standard cell densities sensitizes low cell density cultures. Extracellular nucleosides are the determinants of sensitivity because the latter effect can be mimicked with the use of inhibitors of nucleoside cellular import and reversed by supplying exogenous thymidine and hypoxanthine. Interestingly, treatment at a sensitizing cell density does not preclude the survival of less than 1% of the cells--which have no intrinsic resistance--owing to the inability of the dying cell population to condition the culture medium; this population thus survives indefinitely to continuous treatment by keeping adapted to a low cell number. This cell density-dependent adaptive process accounts for the initial steps of in vitro resistance to methotrexate (MTX) and provides a novel mechanistic insight into the cell population dynamics of cell survival and cell death during drug treatment.  相似文献   

18.
1-O-Acetyl-2-deoxy-3,5-di-O-toluoyl-4-thio-D-erythro-pentofuranose and 2-deoxy-1,3,5-tri-O-acetyl-4-thio-L-threo-pentofuranose were coupled with 5-azacytosine to obtain alpha and beta anomers of nucleosides. All four nucleosides were reduced to the corresponding dihydro derivatives and deblocked to give target compounds. All eight target compounds were evaluated in a series of human cancer cell lines in culture. Only 2'-deoxy-4'-thio-5-azacytidine (3beta) was found to be cytotoxic in all the cell lines and was further evaluated in vivo. Details of the synthesis and biological activity are reported.  相似文献   

19.
We are examining the relationship of RNA metabolism and de novo pyrimidine synthesis as parameters of malignant transformation. These initial experiments on normal hamster embryo fibroblasts have shown that excreted nucleosides are markers for intracellular RNA metabolism. We employed affinity chromatography to concentrate the nucleosides in the medium and sensitive column chromatographic procedures to quantitatively measure them. The excretion of pyrimidine nucleoside from hamster embryo fibroblasts in sulture was found to be dependent on the growth state of the cells, with the greatest accumulation occurring cell quiescence. The major nucleoside excretion products, uridine and cytidine, were both normal end products of RNA metabolism and the major nucleoside excretion products from cultured cells. The modified nucleosides N-1-methylguanosine, N-2-methylguanosine, N-2-dimethylguanosine, N-4-acetylcytidine, N-1-methylinosine, pseudouridine, N-1-methyladenosine, N-3-methylcytidine, and 5-methyleycytidine were found, as were several unidentified nucleosides.  相似文献   

20.
Genetic mutations in the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT), are known to cause Lesch-Nyhan syndrome and Kelley-Seegmiller syndrome. In patients, purine metabolism is different from that of normal persons. We have previously developed a method for simultaneously determining the concentration of purine and pyrimidine nucleosides and nucleotides. This system was applied to determine the concentrations of nucleosides and nucleotides in HPRT-deficient cell lines. The amount of inosine 5'-monophosphate (IMP) was different in Lesch-Nyhan syndrome, Kelley-Seegmiller syndrome, and control cell lines. The difference in the amount of IMP confirmed the mutation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号