首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pre-mRNA splicing factors are enriched in nuclear domains termed interchromatin granule clusters or nuclear speckles. During mitosis, nuclear speckles are disassembled by metaphase and reassembled in telophase in structures termed mitotic interchromatin granules (MIGs). We analysed the dynamics of the splicing factor SC35 in interphase and mitotic cells. In HeLa cells expressing green fluorescent protein (GFP)-SC35, this was localized in speckles during interphase and dispersed in metaphase. In telophase, GFP-SC35 was highly enriched within telophase nuclei and also detected in MIGs. Fluorescence recovery after photobleaching (FRAP) experiments revealed that the mobility of GFP-SC35 was distinct in different mitotic compartments. Interestingly, the mobility of GFP-SC35 was 3-fold higher in the cytoplasm of metaphase cells compared with interphase speckles, the nucleoplasm or MIGs. Treatment of cells with inhibitors of cyclin-dependent kinases (cdks) caused changes in the organization of nuclear compartments such as nuclear speckles and nucleoli, with corresponding changes in the mobility of GFP-SC35 and GFP-fibrillarin. Our results suggest that the dynamics of SC35 are significantly influenced by the organization of the compartment in which it is localized during the cell cycle.  相似文献   

3.
The complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA) essential, among other functions, for the assembly and organization of the omega speckles. The nucleoplasmic omega speckles play important functions in RNA metabolism, in normal and stressed cells, by regulating availability of hnRNPs and some other RNA processing proteins. Chromatin remodelers, as well as nuclear speckles and their associated ncRNAs, are emerging as important components of gene regulatory networks, although their functional connections have remained poorly defined. Here we provide multiple lines of evidence showing that the hsrω ncRNA interacts in vivo and in vitro with ISWI, regulating its ATPase activity. Remarkably, we found that the organization of nucleoplasmic omega speckles depends on ISWI function. Our findings highlight a novel role for chromatin remodelers in organization of nucleoplasmic compartments, providing the first example of interaction between an ATP-dependent chromatin remodeler and a large ncRNA.  相似文献   

4.
5.
6.
Although early studies suggested that little compartmentalization exists within the nucleus, more recent studies on metazoan systems have identified a still increasing number of specific subnuclear compartments. Some of these compartments are dynamic structures; indeed, protein and RNA-protein components can cycle between different domains. This is particularly evident for RNA processing components. In plants, lack of tools has hampered studies on nuclear compartmentalization and dynamics of RNA processing components. Here, we show that transient expression of fluorescent protein fusions of U1 and U2 small nuclear ribonucleoprotein particle (snRNP)-specific proteins U1-70K, U2B", and U2A ', nucleolar proteins Nop10 and PRH75, and serine-arginine-rich proteins in plant protoplasts results in their correct localization. Furthermore, snRNP-specific proteins also were correctly assembled into mature snRNPs. This system allowed a systematic analysis of the cellular localization of Arabidopsis serine-arginine-rich proteins, which, like their animal counterparts, localize to speckles but not to nucleoli and Cajal bodies. Finally, markers for three different nuclear compartments, namely, nucleoli, Cajal bodies, and speckles, have been established and were shown to be applicable for colocalization studies in living plant protoplasts. Thus, transient expression of proteins tagged with four different fluorescent proteins is a suitable system for studying the nuclear organization of spliceosomal proteins in living plant cells and should therefore allow studies of their dynamics as well.  相似文献   

7.
8.
RNAs play diverse roles in formation and function of subnuclear compartments, most of which are associated with active genes. NEAT1 and NEAT2/MALAT1 exemplify long non-coding RNAs (lncRNAs) known to function in nuclear bodies; however, we suggest that RNA biogenesis itself may underpin much nuclear compartmentalization. Recent studies show that active genes cluster with nuclear speckles on a genome-wide scale, significantly advancing earlier cytological evidence that speckles (aka SC-35 domains) are hubs of concentrated pre-mRNA metabolism. We propose the ‘karyotype to hub’ hypothesis to explain this organization: clustering of genes in the human karyotype may have evolved to facilitate the formation of efficient nuclear hubs, driven in part by the propensity of ribonucleoproteins (RNPs) to form large-scale condensates. The special capacity of highly repetitive RNAs to impact architecture is highlighted by recent findings that human satellite II RNA sequesters factors into abnormal nuclear bodies in disease, potentially co-opting a normal developmental mechanism.  相似文献   

9.
10.
Numerous membrane‐less organelles, composed of a combination of RNA and proteins, are observed in the nucleus and cytoplasm of eukaryotic cells. These RNP granules include stress granules (SGs), processing bodies (PBs), Cajal bodies, and nuclear speckles. An unresolved question is how frequently RNA molecules are required for the integrity of RNP granules in either the nucleus or cytosol. To address this issue, we degraded intracellular RNA in either the cytosol or the nucleus by the activation of RNase L and examined the impact of RNA loss on several RNP granules. We find the majority of RNP granules, including SGs, Cajal bodies, nuclear speckles, and the nucleolus, are altered by the degradation of their RNA components. In contrast, PBs and super‐enhancer complexes were largely not affected by RNA degradation in their respective compartments. RNA degradation overall led to the apparent dissolution of some membrane‐less organelles, whereas others reorganized into structures with altered morphology. These findings highlight a critical and widespread role of RNA in the organization of several RNP granules.  相似文献   

11.
Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in the ability to replicate after repeated divisions. We found that at least 135 proteins are associated with SFs, and 63 of them are up-regulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited on RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.  相似文献   

12.
13.
14.
A dynamic energy budget (DEB) model for microalgae is proposed. This model deviates from the standard DEB model as it needs more reserves to cope with the variation of assimilation pathways, requiring a different approach to growth based on the synthesizing unit (SU) theory for multiple substrates. It is shown that the model is able to accurately predict experimental data in constant and light-varying conditions with most of the parameter values taken directly from the literature. Also, model simulations are shown to be consistent with stylized facts (SFs) concerning NC ratio. These SFs are reinterpreted and the general conclusion is that all forcing variables (dilution rate, temperature and irradiance) impose changes in the nitrogen or carbon limitation status of the population, and consequently on reserve densities. Model predictions are also evaluated in comparison with SFs on chlorophyll concentration. It is proposed that an extra structure, more dependent on the nitrogen reserve, is required to accurately model chlorophyll dynamics. Finally, SFs concerning extracellular polymeric substances (EPSs) production by benthic diatoms are collected and interpreted and a formulation based on product synthesis and rejection flux is proposed for the EPSs production rate.  相似文献   

15.
16.
17.
18.
The cell nucleus is a complex and highly dynamic environment with many functionally specialized regions of substructure that form and maintain themselves in the absence of membranes. Relatively little is known about the basic physical properties of the nuclear interior or how domains within the nucleus are structurally and functionally organized and interrelated. Here, we summarize recent data that shed light on the structural and functional properties of three prominent subnuclear organelles--nucleoli, Cajal bodies (CBs) and speckles. We discuss how these findings impact our understanding of the guiding principles of nuclear organization and various types of human disease.  相似文献   

19.
Chromosomes are giant chain molecules organized into an ensemble of three-dimensional structures characterized with its genomic state and the corresponding biological functions. Despite the strong cell-to-cell heterogeneity, the cell-type specific pattern demonstrated in high-throughput chromosome conformation capture (Hi-C) data hints at a valuable link between structure and function, which makes inference of chromatin domains (CDs) from the pattern of Hi-C a central problem in genome research. Here we present a unified method for analyzing Hi-C data to determine spatial organization of CDs over multiple genomic scales. By applying statistical physics-based clustering analysis to a polymer physics model of the chromosome, our method identifies the CDs that best represent the global pattern of correlation manifested in Hi-C. The multi-scale intra-chromosomal structures compared across different cell types uncover the principles underlying the multi-scale organization of chromatin chain: (i) Sub-TADs, TADs, and meta-TADs constitute a robust hierarchical structure. (ii) The assemblies of compartments and TAD-based domains are governed by different organizational principles. (iii) Sub-TADs are the common building blocks of chromosome architecture. Our physically principled interpretation and analysis of Hi-C not only offer an accurate and quantitative view of multi-scale chromatin organization but also help decipher its connections with genome function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号