首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sepsis and ensuing multiple organ failure continue to be the most leading cause of death in critically ill patients. Despite hepatocyte-related dysfunctions such as necrosis, apoptosis as well as mitochondrial damage are observed in the process of sepsis, the molecular mechanism of pathogenesis remains uncertain. We recently identified one of the differentially expressed genes, mitochondrial ATPase inhibitor protein (IF1) which is down-regulated in late septic liver. Hence, we further hypothesized that the variation of IF1 protein may be one of the causal events of the hepatic dysfunction during late sepsis. The results showed that the elevated mitochondrial F0F1-ATPase activity is concomitant with the decline of intramitochondrial ATP concentration in late septic liver. In addition, the key finding of this study showed that the mRNA and the mitochondrial content of IF1 were decreased in late sepsis while no detectable IF1 was found in cytoplasm. When analyzed by immunoprecipitation, it seems reasonable to imply that the association capability of IF1 with F1-ATPase beta-subunit is not affected. These results confirm the first evidence showing that the suppression of IF1 expression and subsequent elevated mitochondrial F0F1-ATPase activity might contribute to the bioenergetic failure in the liver during late sepsis.  相似文献   

2.
An intrinsic ATPase inhibitor inhibits the ATP-hydrolyzing activity of mitochondrial F1F0-ATPase and is released from its binding site on the enzyme upon energization of mitochondrial membranes to allow phosphorylation of ADP. The mitochondrial activity to synthesize ATP is not influenced by the absence of the inhibitor protein. The enzyme activity to hydrolyze ATP is induced by dissipation of the membrane potential in the absence of the inhibitor. Thus, the inhibitor is not responsible for oxidative phosphorylation, but acts only to inhibit ATP hydrolysis by F1F0-ATPase upon deenergization of mitochondrial membranes. The inhibitor protein forms a regulatory complex with two stabilizing factors, 9K and 15K proteins, which facilitate the binding of the inhibitor to F1F0-ATPase and stabilize the resultant inactivated enzyme. The 9K protein, having a sequence very similar to the inhibitor, binds directly to F1 in a manner similar to the inhibitor. The 15K protein binds to the F0 part and holds the inhibitor and the 9K protein on F1F0-ATPase even when one of them is detached from the F1 part.  相似文献   

3.
The expression, localization and activity of the serum- and glucocorticoid-induced protein kinase, Sgk-1, are regulated by multiple hormonal and environmental cues including cellular stress. Biochemical fractionation and indirect immunofluorescence demonstrated that sorbitol induced hyperosmotic stress stimulated expression and triggered the localization of endogenous Sgk-1 into the mitochondria of NMuMG mammary epithelial cells. The immunofluorescence pattern of endogenous Sgk-1 was similar to that of a green fluorescent linked fusion protein linked to the N-terminal Sgk-1 fragment that encodes the mitochondrial targeting signal. In the presence or absence of cellular stress, exogenously expressed wild type Sgk-1 efficiently compartmentalized into the mitochondria demonstrating the mitochondrial import machinery per se is not stressed regulated. Co-immunoprecipitation and GST-pull down assays identified the IF-1 mitochondrial matrix inhibitor of the F1F0-ATPase as a new Sgk-1 binding partner, which represents the first observed mitochondrial target of Sgk-1. The Sgk-1/IF-1 interaction requires the 122-176 amino acid region within the catalytic domain of Sgk-1 and is pH dependent, occurring at neutral pH but not at slightly acidic pH, which suggests that this interaction is dependent on mitochondrial integrity. An in vitro protein kinase assay showed that the F1F0-ATPase can be directly phosphorylated by Sgk-1. Taken together, our results suggest that stress-induced Sgk-1 localizes to the mitochondria, which permits access to physiologically appropriate mitochondrial interacting proteins and substrates, such as IF-1 and the F1F0-ATPase, as part of the cellular stressed induced program.  相似文献   

4.
5.
Specific mgi mutations in the α, β or γ subunits of the mitochondrial F1-ATPase have previously been found to suppress ρ0 lethality in the petite-negative yeast Kluyveromyces lactis. To determine whether the suppressive activity of the altered F1 is dependent on the F0 sector of ATP synthase, we isolated and disrupted the genes KlATP4, 5 and 7, the three nuclear genes encoding subunits b, OSCP and d. Strains disrupted for any one, or all three of these genes are respiration deficient and have reduced viability. However a strain devoid of the three nuclear genes is still unable to lose mitochondrial DNA, whereas a mgi mutant with the three genes inactivated remains petite-positive. In the latter case, ρ0 mutants can be isolated, upon treatment with ethidium bromide, that lack six major F0 subunits, namely the nucleus-encoded subunits b, OSCP and d, and the mitochondrially encoded Atp6, 8 and 9p. Production of ρ0 mutants indicates that an F1-complex carrying a mgi mutation can assemble in the absence of F0 subunits and that suppression of ρ0 lethality is an intrinsic property of the altered F1 particle. Received: 7 April 1998 / Accepted: 10 June 1998  相似文献   

6.
Rat liver peroxisomes contain in their matrix the α-subunit of the mitochondrial F1-ATPase complex. The identification of this protein in liver peroxisomes has been achieved by immunoelectron microscopy and subcellular fractionation. No β-subunit of the mitochondrial F1-ATPase complex was detected in the peroxisomal fractions obtained in sucrose gradients or in Nycodenz pelletted peroxisomes. The consensus peroxisomal targeting sequence (Ala-Lys-Leu) is found at the carboxy terminus of the mature α-subunit from bovine heart and rat liver mitochondria. Due to the dual subcellular localization of the α-subunit and to the structural homologies that exist between this protein and molecular chaperones [(1990) Biol. Chem. 265, 7713-7716] it is suggested that the protein should perform another functional role(s) in both organelles, plus to its characteristic involvement in the regulation of mitochondrial ATPase activity.  相似文献   

7.
Oligomycin Sensitivity Conferral Protein (OSCP) and an F1-ATPase Binding Protein were isolated from F1-depleted rat liver mitochondrial membrane. Their molecular weights on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and urea were 22,500 and 8,500 respectively. When incubated with liver TUA (trypsin, urea and ammonia-treated) submitochondrial particles, the binding protein was effective in the binding of F1 to the particles with the resultant particle-bound ATPase activity not oligomycin sensitive. When OSCP was then incubated with the reconstituted membrane-bound ATPase, its activity became oligomycin sensitive. These results suggest that, first; the binding protein, but not OSCP, connects F1-ATPase to the membrane of rat liver mitochondria and maybe to the “stalk”, if indeed there is a stalk in mitochondrial membrane ATPase complex; and second; the function of OSCP is solely to render the ATPase activity sensitive to oligomycin and other similar inhibitors.  相似文献   

8.

Background

Mitochondrial ATP synthase is expressed as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein component in High Density Lipoproteins (HDL). On hepatocytes, apoA-I binds to cell surface ATP synthase (namely ecto-F1-ATPase) and stimulates its ATPase activity, generating extracellular ADP. This production of extracellular ADP activates a P2Y13-mediated HDL endocytosis pathway. Conversely, exogenous IF1, classically known as a natural mitochondrial specific inhibitor of F1-ATPase activity, inhibits ecto-F1-ATPase activity and decreases HDL endocytosis by both human hepatocytes and perfused rat liver.

Methodology/Principal Findings

Since recent reports also described the presence of IF1 at the plasma membrane of different cell types, we investigated whether IF1 is present in the systemic circulation in humans. We first unambiguously detected IF1 in human serum by immunoprecipitation and mass spectrometry. We then set up a competitive ELISA assay in order to quantify its level in human serum. Analyses of IF1 levels in 100 normolipemic male subjects evidenced a normal distribution, with a median value of 0.49 µg/mL and a 95% confidence interval of 0.22–0.82 µg/mL. Correlations between IF1 levels and serum lipid levels demonstrated that serum IF1 levels are positively correlated with HDL-cholesterol and negatively with triglycerides (TG).

Conclusions/Significance

Altogether, these data support the view that, in humans, circulating IF1 might affect HDL levels by inhibiting hepatic HDL uptake and also impact TG metabolism.  相似文献   

9.
Nakazono M  Imamura T  Tsutsumi N  Sasaki T  Hirai A 《Planta》2000,210(2):188-194
Two cDNA clones encoding F1F0-ATPase inhibitor proteins, which are loosely associated with the F1 part of the mitochondrial F1F0-ATPase, were characterized from rice (Oryza sativa L. cv. Nipponbare). A Northern hybridization showed that the two genes (designated as IF 1 -1 and IF 1 -2) are transcribed in all the organs examined. However, the steady-state mRNA levels varied among organs. A comparison of the deduced amino acid sequences of the two IF 1 genes and the amino acid sequence of the mature IF1 protein from potato revealed that IF1-1 and IF1-2 have N-terminal extensions with features that are characteristic of a mitochondrial targeting signal. To determine the subcellular localization of the gene products, the IF1-1 or IF1-2 proteins were fused in frame to the green fluorescent protein (GFP) or the fused GFP-β-glucuronidase, and expressed transiently in onion or dayflower epidermal cells. Localized fluorescence was detected in mitochondria, confirming that the two IF1 proteins are targeted to mitochondria. Received: 9 July 1999 / Accepted: 17 August 1999  相似文献   

10.
Summary— A review of the proteinaceous machinery involved in protein sorting pathways and protein folding and assembly in mitochondria and peroxisomes is presented. After considering the various sorting pathways and targeting signals of mitochondrial and peroxisomal proteins, we make a comparative dissection of the protein factors involved in: i) the stabilization of cytosolic precursor proteins in a translocation competent conformation; ii) the membrane import apparatus of mitochondria and peroxisomes; iii) the processing of mitochondrial precursor proteins, and the eventual processing of certain peroxisomal precursor, in the interior of the organelles; and iv) the requirement of molecular chaperones for appropriate folding and assembly of imported proteins in the matrix of both organelles. Those aspects of mitochondrial biogenesis that have developed rapidly during the last few years, such as the requirement of molecular chaperones, are stressed in order to stimulate further parallel investigations aimed to understand the origin, biochemistry, molecular biology and pathology of peroxisomes. In this regard, a brief review of findings from our group and others is presented in which the role of the F1-ATPase α-subunit is pointed out as a molecular chaperone of mitochondria and chloroplasts. In addition, data are presented that could question our previous indication that the immunoreactive protein found in the rat liver peroxisomes is due to the presence of the F1-ATPase α-subunit.  相似文献   

11.
We showed previously that active PKC-α maintains F0F1-ATPase activity, whereas inactive PKC-α mutant (dnPKC-α) blocks recovery of F0F1-ATPase activity after injury in renal proximal tubules (RPTC). This study tested whether mitochondrial PKC-α interacts with and phosphorylates F0F1-ATPase. Wild-type PKC-α (wtPKC-α) and dnPKC-α were overexpressed in RPTC to increase their mitochondrial levels, and RPTC were exposed to oxidant or hypoxia. Mitochondrial levels of the γ-subunit, but not the α- and β-subunits, were decreased by injury, an event associated with 54% inhibition of F0F1-ATPase activity. Overexpressing wtPKC-α blocked decreases in γ-subunit levels, maintained F0F1-ATPase activity, and improved ATP levels after injury. Deletion of PKC-α decreased levels of α-, β-, and γ-subunits, decreased F0F1-ATPase activity, and hindered the recovery of ATP content after RPTC injury. Mitochondrial PKC-α co-immunoprecipitated with α-, β-, and γ-subunits of F0F1-ATPase. The association of PKC-α with these subunits decreased in injured RPTC overexpressing dnPKC-α. Immunocapture of F0F1-ATPase and immunoblotting with phospho(Ser) PKC substrate antibody identified phosphorylation of serine in the PKC consensus site on the α- or β- and γ-subunits. Overexpressing wtPKC-α increased phosphorylation and protein levels, whereas deletion of PKC-α decreased protein levels of α-, β-, and γ-subunits of F0F1-ATPase in RPTC. Phosphoproteomics revealed phosphorylation of Ser146 on the γ subunit in response to wtPKC-α overexpression. We concluded that active PKC-α 1) prevents injury-induced decreases in levels of γ subunit of F0F1-ATPase, 2) interacts with α-, β-, and γ-subunits leading to increases in their phosphorylation, and 3) promotes the recovery of F0F1-ATPase activity and ATP content after injury in RPTC.  相似文献   

12.
Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5′-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F0F1-ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 μM, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F0F1-ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.  相似文献   

13.
Temperature modulates both myocardial energy requirements and production. We have previously demonstrated that myocardial protection induced by hypothermic adaptation preserves expression of genes regulating heat shock protein and the nuclear-encoded mitochondrial proteins, the adenine nucleotide translocator isoform 1 (ANT1), and the β subunit of F1-ATPase (βF1-ATPase). This preservation is associated with a reduction in ATP depletion similar to that noted in cardioplegic arrested hearts preserved at a critical temperature (30°C) or below. We tested the hypothesis that expression of these genes may also be subject to this temperature threshold phenomenon. Isolated perfused rabbit hearts were subjected to ischemic cardioplegic arrest at 4, 30, or 34°C for 120 min. Cardiac function indices and steady-state mRNA levels for ANT1, βF1-ATPase, and HSP70-1 were measured prior to ischemia (B) and after 45 min of reperfusion. Cardiac function was significantly depressed in the 34°C group. Ischemia at 34°C reduced steady-state mRNA levels for ANT1and βF1-ATPase from B, but these levels were similarly preserved at 4 and 30°C. HSP70-1 levels were mildly elevated (fourfold) above B to similar levels at all three temperatures. These results indicate that mRNA expression for ANT1and βF1-ATPase is specifically preserved in a pattern consistent with the temperature threshold phenomenon. HSP70-1 expression is not influenced by ischemic temperature. Preservation of gene expression for these mitochondrial proteins implies that signaling for mitochondrial biogenesis or resynthesis is maintained after ischemic insult.  相似文献   

14.
A simple method of isolating mitochondrial ATPase from rat liver and Morris hepatoma cell lines by chloroform extraction and chromatography on DEAE-Sephadex is described. This method is suitable even when small amounts of starting material with relatively low specific ATPase activity (in the case of hepatoma mitochondria and submitochondrial particles) are available. The isolated enzyme from both rat liver and hepatomas had a high specific activity, was similarly activated by bicarbonate and 2,4-dinitrophenol, and had a typical five-band pattern in sodium dodecyl sulfate electrophoresis. Prior to DEAE-Sephadex chromatography, an additional protein band which migrates between the δ and ? subunits in the tumor F1-ATPase preparation was observed. The purified enzymes were cold labile and restored oxidative phosphorylation function of F1-ATPase depleted submitochondrial particles prepared from rat liver. The ATPase activity of the isolated enzymes was inhibited by mitochondrial ATPase inhibitor protein. The apparent stoichiometry of the inhibitor protein to the purified ATPase was extrapolated to be 2:1.  相似文献   

15.
Interaction of mitochondrial F1-ATPase with the isolated natural inhibitor protein resulting in the inhibition of multi-site ATP hydrolysis is accompanied by the loss of activity at low ATP concentrations when single-site hydrolysis should occur. Catalytic site occupancy by [14C]nucleotides in F1-ATPase during steady-state [14C]ATP hydrolysis, which is saturated in parallel with single-site catalysis, is prevented after blocking the enzyme with the inhibitor protein.  相似文献   

16.
NOS isoform activation is related to liver failure during sepsis, but the mechanisms driving mitochondrial impairment remain unclear. We induced sepsis by LPS administration to inducible nitric oxide synthase (iNOS?/?) and neuronal nitric oxide synthase (nNOS?/?) mice and their respective wild-type controls to examine the contribution of iNOS to mitochondrial failure in the absence of nNOS. To achieve this goal, the determination of messenger RNA (mRNA) expression and protein content of iNOS in cytosol and mitochondria, the mitochondrial respiratory complex content, and the levels of nitrosative and oxidative stress (by measuring 3-nitrotyrosine residues and carbonyl groups, respectively) were examined in the liver of control and septic mice. We detected strongly elevated iNOS mRNA expression and protein levels in liver cytosol and mitochondria of septic mice, which were related to enhanced oxidative and nitrosative stress, and with fewer changes in respiratory complexes. The absence of the iNOS, but not nNOS, gene absolutely prevented mitochondrial impairment during sepsis. Moreover, the nNOS gene did not modify the expression and the effects of iNOS here shown. Melatonin administration counteracted iNOS activation and mitochondrial damage and enhanced the expression of the respiratory complexes above the control values. These effects were unrelated to the presence or absence of nNOS. iNOS is a main target to prevent liver mitochondrial impairment during sepsis, and melatonin represents an efficient antagonist of these iNOS-dependent effects whereas it may boost mitochondrial respiration to enhance liver survival.  相似文献   

17.
Corn mitochondrial F1-ATPase was purified from submitochondrial particles by chloroform extraction. Enzyme stored in ammonium sulfate at 4°C was substantially activated by ATP, while enzyme stored at −70°C in 25% glycerol was not. Enzyme in glycerol remained fully active (8-9 micromoles Pi released per minute per milligram), while the ammonium sulfate preparations steadily lost activity over a 2-month storage period. The enzyme was cold labile, and inactived by 4 minutes at 60°C. Treatment with octylglucoside resulted in complete loss of activity, while vanadate had no effect on activity. The apparent subunit molecular weights of corn mitochondrial F1-ATPase were determined by SDS-polyacrylamide gel electrophoresis to be 58,000 (α), 55,000 (β), 35,000 (γ), 22,000 (δ), and 12,000 (ε). Monoclonal and polyclonal antibodies used in competitive binding assays demonstrated that corn mitochondrial F1-ATPase was antigenically distinct from the chloroplastic CF1-ATPases of corn and spinach. Monoclonal antibodies against antigenic sites on spinach CF1-ATPase β and γ subunits were used to demonstrate that those sites were either changed substantially or totally absent from the mitochondrial F1-ATPase.  相似文献   

18.
The effect of increased expression or reconstitution of the mitochondrial inhibitor protein (IF1) on the dimer/monomer ratio (D/M) of the rat liver and bovine heart F1F0-ATP synthase was studied. The 2-fold increased expression of IF1 in AS-30D hepatoma mitochondria correlated with a 1.4-fold increase in the D/M ratio of the ATP synthase extracted with digitonin as determined by blue native electrophoresis and averaged densitometry analyses. Removal of IF1 from rat liver or bovine heart submitochondrial particles increased the F1F0-ATPase activity and decreased the D/M ratio of the ATP synthase. Reconstitution of recombinant IF1 into submitochondrial particles devoid of IF1 inhibited the F1F0-ATPase activity by 90% and restored partially the D/M ratio of the whole F1F0 complex as revealed by blue native electrophoresis and subsequent SDS-PAGE or glycerol density gradient centrifugation. Thus, the inhibitor protein promotes or stabilizes the dimeric form of the intact F1F0-ATP synthase. A possible location of the IF1 protein in the dimeric structure of the rat liver F1F0 complex is proposed. According to crystallographic and electron microscopy analyses, dimeric IF1 could bridge the F1-F1 part of the dimeric F1F0-ATP synthase in the inner mitochondrial membrane.  相似文献   

19.
Mitochondrial ATP synthase (F1F0-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In this study, we overexpressed and purified human and bovine ATPase inhibitors and their properties were compared with those of a yeast inhibitor. The human and bovine inhibitors inhibited bovine ATPase in a similar way. The yeast inhibitor also inhibited bovine F1F0-ATPase, although the activity was about three times lower than the mammalian inhibitors. All three inhibitors inhibited yeast F1F0-ATPase in a similar way. The activities of all inhibitors decreased at higher pH, but the magnitude of the decrease was different for each combination of inhibitor and ATPase. The results obtained in this study show that the inhibitory mechanism of the inhibitors was basically shared in yeast and mammals, but that mammalian inhibitors require unique residues, which are lacking in the yeast inhibitor, for their maximum inhibitory activity. Common inhibitory sites of mammalian and yeast inhibitors are suggested.  相似文献   

20.
F1 domain of F1Fo-ATPase was initially believed to be strictly expressed in the mitochondrial membrane. Interestingly, recent reports have shown that the F1 complex can serve as a cell surface receptor for apparently unrelated ligands. Here we show for the first time the presence of the F1-ATPase at the cell surface of normal or cancerous colonic epithelial cells. Using surface plasmon resonance technology and mass spectrometry, we identified a peptide hormone product of the gastrin gene (glycine-extended gastrin (G-gly)) as a new ligand for the F1-ATPase. By molecular modeling, we identified the motif in the peptide sequence (E(E/D)XY), that directly interacts with the F1-ATPase and the amino acids in the F1-ATPase that bind this motif. Replacement of the Glu-9 residue by an alanine in the E(E/D)XY motif resulted in a strong decrease of G-gly binding to the F1-ATPase and the loss of its biological activity. In addition we demonstrated that F1-ATPase mediates the growth effects of the peptide. Indeed, blocking F1-ATPase activity decreases G-gly-induced cell growth. The mechanism likely involves ADP production by the membrane F1-ATPase, which is induced by G-gly. These results suggest an important contribution of cell surface F1-ATPase in the pro-proliferative action of this gastrointestinal peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号