首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protective effect of bicarbonate (BC) against extraction of the extrinsic proteins, predominantly the Mn-stabilizing protein (PsbO protein), during treatment of Photosystem II (PS II) membrane fragment from pea with 2 M urea, and at low pH (using incubation in 0.2 M glycine-HCl buffer, pH 3.5 or 0.5 M citrate buffer, pH 4.0-4.5) was detected. It was shown that the extraction of the proteins with Mw 24 kDa (PsbP protein) and 18 kDa (PsbQ protein) by the use of highly concentrated solutions of NaCl does not depend on the presence of BC in the medium. An optimal concentration of BC at which it produces the maximum protecting effect was shown to be between 1 mM and 10 mM. The addition of formate did not influence the protein extraction but it reduced the stabilizing effect of BC. Independence of the stabilizing effect on the presence of the functionally active Mn within the water-oxidizing complex indicates that the protecting effect of BC is not related to its interaction with Mn ions. The fact that there is a preferable sensitivity of the PsbO protein to the absence of BC in the medium during all the treatments makes it possible to suggest that either BC interacts directly with the PsbO protein or it binds to some other sites within PS II and this binding facilitates the preservation of the native structure of this protein.  相似文献   

2.
Removal of 23 and 17 kDa water-soluble polypeptides from PS II membranes causes a marked decrease in oxygen-evolution activity, exposes the oxidizing side of PS II to exogenous reductants (Ghanotakis, D.F., Babcock, G.T. and Yocum, C.F. (1984) Biochim. Biophys. Acta 765, 388–398) and alters a high-affinity binding site for Ca2+ in the oxygen-evolving complex (Ghanotakis, D.F., Topper, J.N., Babcock, G.T. and Yocum, C.F. (1984) FEBS Lett. 170, 169–173). We have examined further the state of the functional Mn complex in PS II membranes from which the 17 and 23 kDa species have been removed by high-salt treatment. These membranes contain a structurally altered Mn complex which is sensitive to destruction by low concentrations of NH2OH which cannot, in native PS II membranes, cause extraction of functional Mn. In addition to NH2OH, a wide range of other small (H2O2, NH2NH2, Fe2+) and bulky (benzidine, hydroquinone) electron donors extract Mn (up to 80%) from the polypeptide-depleted PS II preparations. This extraction is due to reduction of the functional Mn complex since light, which would generate higher oxidation states within the Mn complex, prevents Mn release by reductants. Release of Mn by reductants does not extract the 33 kDa water-soluble protein implicated in Mn binding to the oxidizing side of PS II, although the protein can be partially or totally extracted from Mn-depleted preparations by exposure to high ionic strength or to high (0.8 M) concentrations of Tris. We view our results as evidence for a shield around the Mn complex of the oxygen-evolving complex comprised of the 33 kDa polypeptide along with the 23 and 17 kDa proteins and tightly bound Ca2+.  相似文献   

3.
4.
It is shown that restoration of photoinduced electron flow with added Mn2+ (measured by photoreduction of DCPIP and photoinduced change of chlorophyll fluorescence yield) in Mn-depleted Photosystem II (PS II) membrane fragments isolated from spinach chloroplasts, is considerably increased by exogenous histidine (His). The stimulating effect of His is not observed if other electron donors (NH2OH or diphenylcarbazide) are used instead of Mn2+. His added alone does not induce electron transfer in Mn-depleted PS II preparations. Investigation of pH dependence of the stimulating effect of 2 mM His shows that the effect is observed only at pH > 5.0, it gives a 50% activation around pH 6.0 and saturates at pH 7.0–7.5. Nearly 200 μM His is required for a 50 effect at pH 7.0. It is suggested that the added His can be involved in stimulation of electron transfer on the donor side of PS II through direct interaction of Mn2+ with deprotonated form(s) of His resulting in formation of Mn–His complexes capable of efficient electron donation to PS II (though it is not excluded that His serves as a base that takes part in proton exchange coupled with redox reactions on the donor side of PS II or as an electron donor to the oxidized Mn).  相似文献   

5.
The binding of endogenous manganese (Mn) to proteins released from spinach grana-thylakoid membranes by 2% cholate detergent or by osmotic shock is investigated. A mixture of 15–20 proteins is released by cholate and has been separated by isoelectric focusing in a sucrose gradient or by chromatofocusing. Mn coelutes with several proteins, but is lost upon dialysis. A dramatic redistribution of this Mn occurs in proteins released by osmotic shock in the presence of hydrophobic and hydrophilic oxidants. Maintaining an oxidizing solution potential during extraction apparently precludes reduction of the higher oxidation states of Mn to the labile Mn(II) state by reducing agents released from the membranes during lysing. This allows proteins to be separated which bind non-labile Mn ions. Under these extraction conditions, a protein is isolated which has an apparent molecular weight (Mr) of 65 000 or 56 000 on SDS-polyacrylamide gel electrophoresis depending on the sample buffer system used. The nondissociated protein occurs as a monomer of 58 kDa (90%) and an apparent dimer of 112 kDa (10%) by gel filtration. This protein binds little Mn if extracted by cholate and separated by isoelectric focusing. However, extraction by osmotic shock in the presence of oxidants and separation by chromatofocusing results in the retention of 1.9 ± 0.3 Mn ions per monomer. This protein is identical to that reported by Spector and Winget (Spector, M., and Winget, G.D. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 957–959). Contrary to their result, this protein does not reconstitute O2 evolution when added to depleted membranes. Rabbit antibody to this purified protein inhibits O2 evolution by 20% when incubated with intact grana-thylakoid membranes or 10–20% with partially inverted, French-pressed thylakoids. This inhibition is completely removed by 10?3 M NH3Cl as an uncoupler of photophosphorylation. These results support a role in Phosphorylation and a location on the outer surface of the thylakoids. This antibody also selectively binds purified coupling factor, CF1, the multisubunit phosphorylation enzyme which is located on the outer thylakoid surface and which is known to bind two Mn ions tightly (Hochman, Y. and Carmeli, C. (1981) Biochemistry 20, 6293–6297). Thus the β-subunit of CF1, which has a molecular weight of 56 kDa, can be identified as the locus of Mn binding in CF1 and as the Mn protein isolated by Spector and Winget. This protein plays no role on O2 evolution.  相似文献   

6.
The latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of ∼ 5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex.  相似文献   

7.
Treatment of Photosystem II particles from spinach chloroplasts with Triton X-100 with 2.6 M urea in the presence of 200 mM NaCl removed 3 polypeptides of 33 kDa, 24 kDa and 18 kDa, but left Mn bound to the particles. The (urea + NaCl)-treated particles could evolve oxygen in 200 mM, but not in 10 mM NaCl. Mn was gradually released with concomitant loss of oxygen-evolution activity in 10 mM NaCl but not in 200 mM Cl?. The NaCl-treated particles, which contained Mn and the 33-kDa polypeptide but not the 24-kDa and 18-kDa polypeptides, did not lose Mn or oxygen-evolution activity in 10 mM NaCl. These observations suggest that the 33-kDa polypeptide maintains the binding of Mn to the oxygen-evolution system and can be functionally replaced by 200 mM Cl?.  相似文献   

8.
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the β-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn2+ and Ca2+ ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.  相似文献   

9.
35Cl-NMR studies are presented here for spinach Photosystem II membranes inhibited by hydroxylamine (to remove Mn), Tris (to remove Mn and 18, 24 and 33 kDa polypeptides), and salt-washing (to remove 18 and 24 kDa; and 33 kDa polypeptides). Removal of Mn affects the 35Cl-NMR binding curve only slightly, indicating that not all of the bound Mn is directly required for Cl-binding. Removal of both Mn and extrinsic polypeptides eliminates almost all of the Cl-specific binding observable by NMR. Removal of the extrinsic 18 and 24 kDa polypeptides drastically changes the 35Cl-NMR binding pattern; this effect is partially restored by the addition of 2 mM CaSO4, and, to a lesser extent, by the partial rebinding of the polypeptides. Existence of Cl binding to the intrinsic polypeptides (e.g., D1/D2), with a peak at 0.5 mM Cl, is shown in samples lacking 18, 24 and 33 kDa polypeptides. Thus, both intrinsic (i.e., on the D1/D2 membrane protein) and extrinsic (i.e., on the 33 kDa protein) binding sites for Cl are suggested to exist.  相似文献   

10.
Three extrinsic proteins (PsbO, PsbP and PsbQ), with apparent molecular weights of 33, 23 and 17 kDa, bind to the lumenal side of Photosystem II (PS II) and stabilize the manganese, calcium and chloride cofactors of the oxygen evolving complex (OEC). The effect of these proteins on the structure of the tetramanganese cluster, especially their possible involvement in manganese ligation, is investigated in this study by measuring the reported histidine-manganese coupling [Tang et al. (1994) Proc Natl Acad Sci USA 91: 704–708] of PS II membranes depleted of none, two or three of these proteins using ESEEM (electron spin echo envelope modulation) spectroscopy. The results show that neither of the three proteins influence the histidine ligation of manganese. From this, the conserved histidine of the 23 kDa protein can be ruled out as a manganese ligand. Whereas the 33 and 17 kDa proteins lack conserved histidines, the existence of a 33 kDa protein-derived carboxylate ligand has been posited; our results show no evidence for a change of the manganese co-ordination upon removal of this protein. Studies of the pH-dependence of the histidine–manganese coupling show that the histidine ligation is present in PS II centers showing the S2 multiline EPR signal in the pH-range 4.2–9.5. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Analysis of the Structure of the PsbO Protein and its Implications   总被引:3,自引:0,他引:3  
The PsbO protein is a ubiquitous extrinsic subunit of Photosystem II (PS II), the water splitting enzyme of photosynthesis. A recently determined 3D X-ray structure of a cyanobacterial protein bound to PS II has given an opportunity to conduct complete analyses of its sequence and structural characteristics using bioinformatic methods. Multiple sequence alignments for the PsbO family are constructed and correlated with the cyanobacterial structure. We identify the most conserved regions of PsbO and the mapping of their positions within the structure indicates their functional roles especially in relation to interactions of this protein with the lumenal surface of PS II. Homologous models for eukaryotic PsbO were built in order to compare with the prokaryotic protein. We also explore structural homology between PsbO and other proteins for which 3D structures are known and determine its structural classification. These analyses contribute to the understanding of the function and evolutionary origin of the PS II manganese stabilising protein.  相似文献   

12.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175].  相似文献   

13.
Various washing procedures were tested on Triton-prepared PS II particles for their ability to remove the 33 kDa extrinsic polypeptide (33 kDa EP) associated with the water-splitting complex. Residual 33 kDa EP was evaluated by Coomassie blue staining of SDS gels of washed particles and by Western blotting with an antibody specific for the 33 kDa EP. A wash with 16 mM Tris buffer, pH 8.3, inhibited water-splitting activity but did not remove all the 33 kDa EP. Sequential washes with 30 mM octyl glucoside (pH 8.0 and 6.8), and a single wash with 0.8 M Tris were also ineffective in removing all the 33 kDa EP. Washing with 1 M CaCl2 was more effective in removing 33 kDa EP; while only a faint trace of protein was detectable by Coomassie-staining, immunoblotting revealed a considerable remainder. The treated particles retained some water-splitting activity. The two step procedure of Miyao and Murata (1984) involving 1 M NaCl and 2.3 M urea was most effective, removing all but a trace of antibody positive protein. Our finding suggests that (1) the degree of depletion of the 33 kDa EP cannot be judged on the basis of Coomassie stain alone, and (2) this extrinsic protein is very tightly associated with the membrane, perhaps via a hydrophilic portion of this otherwise hydrophilic protein. The results also suggest that the presence or absence of the 33 kDa protein per se is not the primary determinant of residual water splitting activity.Abbreviations Chl chlorophyll - DCPIP dichlorophenolindophenol - DPC diphenolcarbazide - DTT dithiothreitol - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(N-morpholino)ethanesulfonic acid - SDS sodium dodecyl sulfate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

14.
Yih-Kuang Lu 《BBA》2007,1767(6):633-638
The effects of Cl, Mn2+, Ca2+, and pH on extrinsic and intrinsic photosystem II carbonic anhydrase activity were compared. Under the conditions of our in vitro experiments, extrinsic CA activity, located on the OEC33 protein, was optimum at about 30 mM Cl, and strongly inhibited above this concentration. This enzyme is activated by Mn2+ and stimulated somewhat by Ca2+. The OEC33 showed dehydration activity that is optimum at pH 6 or below. In contrast, intrinsic CA activity found in the PSII complex after removal of extrinsic proteins was stimulated by Cl up to 0.4 M. Ca2+ appears to be the required cofactor, which implies that the location of the intrinsic CA activity is in the immediate vicinity of the CaMn4 complex. Up to now, intrinsic CA has shown only hydration activity that is nearly pH independent.  相似文献   

15.
A new sensitive and instantaneous spectrofluorimetric method for efficient determination of lomefloxacin (LMX) in its pure, dosage form and human plasma was designed. The developed method depends on formation of a metal-chelation compound of LMX as a ligand with zinc(II) in a buffer of acetate (pH 5.5). The following parameters; type of metal, concentration of metal, pH, type of buffer and diluting solvent were optimized. After carefully investigation; 0.2 mM zinc, 2.0 ml acetate buffer (pH 5.5) and water as diluting solvent were set as optimum reaction conditions. Under these conditions, a large increase in the intensity of the fluorescence of LMX was attained at 450 after excitation at 284 nm. The limits of detection and quantification were 5.8 and 1.9 ng ml−1, respectively, with linearity range of 10.0 to 500.0 ng ml−1. The binding mode of LMX and zinc(II) ion (Zn2+) was found to be 2:1, respectively, and confirmed by Job's plot method. Furthermore, it extended to the analysis of LMX in the spiked plasma of humans with percentage recovery (98.70 ± 0.97 to 100.30 ± 1.69%, n = 3).  相似文献   

16.
Cross-reconstitution of the extrinsic proteins and Photosystem II (PS II) from a green alga, Chlamydomonas reinhardtii, and a higher plant,Spinacia oleracea, was performed to clarify the differences of binding properties of the extrinsic proteins between these two species of organisms. (1) Chlamydomonas PsbP and PsbQ directly bound to Chlamydomonas PS II independent of the other extrinsic proteins but not to spinach PS II. (2) Chlamydomonas PsbP and PsbQ directly bound to the functional sites of Chlamydomonas PS II independent of the origins of PsbO, while spinach PsbP and PsbQ only bound to non-functional sites on Chlamydomonas PS II. (3) Both Chlamydomonas PsbP and spinach PsbP functionally bound to spinach PS II in the presence of spinach PsbO. (4) While Chlamydomonas PsbP functionally bound to spinach PS II in the presence of Chlamydomonas PsbO, spinach PsbP bound loosely to spinach PS II in the presence of Chlamydomonas PsbO with no concomitant restoration of oxygen evolution. (5) Chlamydomonas PsbQ bound to spinach PS II in the presence of Chlamydomonas PsbP and PsbO or spinach PsbO but not to spinach PS II in the presence of spinach PsbP and Chlamydomonas PsbO or spinach PsbO. (6) Spinach PsbQ did not bind to spinach PS II in the presence of Chlamydomonas PsbO and PsbP. On the basis of these results, we showed a simplified scheme for binding patterns of the green algal and higher plant extrinsic proteins with respective PS II.  相似文献   

17.
In this paper, we show the substrate 4-(trimethylsilyl)-3-butyn-2-one is unstable, and can be easily cleaved into a carbonyl alkyne and trimethylhydroxysilane in aqueous buffer with pH above 6.0. However, this problem could be effectively solved by lowering the buffer pH. Meanwhile, the efficient synthesis of enantiopure (S)-4-(trimethylsilyl)-3-butyn-2-ol, a key intermediate for preparing a 5-lipoxygenase inhibitor, has been successfully conducted through the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one with immobilized Candida parapsilosis CCTCC M203011 cells. For optimization of the reaction, various influential variables, such as buffer pH, co-substrate concentration, reaction temperature and substrate concentration, were systematically examined. All the factors mentioned above had effect on the reaction to some extent. The optimal buffer pH, co-substrate concentration, reaction temperature and substrate concentration were 5.0, 65.3 mM, 30 °C and 3.0 mM, respectively, under which the maximum yield and product e.e. were as high as 81.3% and >99.9% after a reaction time of 1 h, which are much higher than the corresponding values previously reported.  相似文献   

18.
Plants were grown in field conditions in the wide area under normal water supply and severe water deficit. Two wheat (Triticum aestivum L.) genotypes contrasting by architectonics and differing in drought-resistance were used: Giymatli-2/17, short stature, with broad and drooping leaves, drought-sensitive, and Azamatli-95, short stature, with vertically oriented small leaves, drought-tolerant). It was found out that Giymatli-2/17 was characterized by relatively low content of Chl a-protein of PS I (CP I) and β-subunit of ATP-synthase complex, the high content of proteins in the 33-30.5 kDa region and LHC polypeptides (28-24.5 kDa), the intensive fluorescence at 740 nm and more high photochemical activity of PS II under normal irrigation compared with Azamatli-95. However, the content of CP I (Mr 115 kDa) and apoprotein of P700 with Mr 63 kDa insignificantly increases in the drought-resistant genotype Azamatli-95 under extreme water supply condition while their content decreases in drought-sensitive cv Giymatli-2/17. Intensity of synthesis α- and β-subunits of CF1 (55 and 53.5 kDa) also decreases in Giymatli-2/17. The levels of the core antenna polypeptides of FS II with Mr 46 and 44.5 kDa (CP47 and CP43) remains stable both in normal, and stressful conditions. At the same time the significant reduction is observed in the content of polypeptides in the 33-30.5 kDa region in the more sensitive genotype Giymatli-2/17. There is an increase in the LHC II polypeptides level in tolerant genotype Azamatli-95 in contrast to Giymatli-2/17 (where the content of these subunits is observed decreasing). The intensity of short wavelength peaks at 687 and 695 nm sharply increases in the fluorescence spectra (77 K) of chloroplasts from sensitive genotype Giymatli-2/17 under water deficiency and there is a stimulation of the ratio of fluorescence band intensity F687/F740. After exposure to drought, cv Giymatli-2/17 shows a larger reduction in the actual PS II photochemical efficiency of chloroplasts than cv Azamatli-95.  相似文献   

19.
Rita Barr  Frederick L. Crane 《BBA》1980,591(1):127-134
Two possible 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive sites were found in PS II of spinach chloroplasts, depending on the pH of the assay medium used. The low site (pH 6) can be inhibited by certain quinolines, such as 8-hydroxyquinoline at concentrations less than 50 μM. The high pH site (pH 8) can be inhibited by disodium cyanamide, folic acid, or 5,6-benzoquinoline at concentrations from 50 μM to 5 mM. With the exception of orthophenanthroline, which stimulates the high pH site but does not show much inhibition at low pH, all other inhibitors gave opposite effects at the pH values used, i.e., they stimulated at low pH or inhibited at high pH, or vice versa. Several mechanisms for the observed effects are discussed.  相似文献   

20.
Treatment of intact thylakoid membranes with Triton X-100 at pH 6 produces a preparation of the PS II complex capable of high rates of O2 evolution. The preparation contains four managanese, one cytochrome b-559, one Signal IIf and one Signal IIs per 250 chlorophylls. By selective manipulation of the preparation polypeptides of approximate molecular weights of 33, 23 and 17 kDa can be removed from the complex. Release of 23 and 17 kDa polypeptides does not release functional manganese. Under these conditions Z+ is not readily and directly accessible to an added donor (benzidine) and it appears as if at least some of the S-state transitions occur. Evidence is presented which indicates that benzidine does have increased access to the oxygen-evolving complex in these polypeptide depleted preparations. Conditions which release the 33 kDa species along with Mn and the 23 and 17 kDa polypeptides generate an alteration in the structure of the oxidizing side of PS II, which becomes freely accessible to benzidine. These findings are examined in relationship to alterations of normal S-state behavior (induced by polypeptide release) and a model is proposed for the organization of functional manganese and polypeptides involved in the oxygen-evolving reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号