首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We identified a spontaneously generated mutant from Synechocystis sp. PCC6803 wild-type cells grown in BG-11 agar plates containing 5 mM Glu and 10 μM DCMU. This mutant carries an R7L mutation on the α-subunit of cyt b559 in photosystem II (PSII). In the recent 2.9 Å PSII crystal structural model, the side chain of this arginine residue is in close contact with the heme propionates of cyt b559. We called this mutant WR7Lα cyt b559. This mutant grew at about the same rate as wild-type cells under photoautotrophical conditions but grew faster than wild-type cells under photoheterotrophical conditions. In addition, 77 K fluorescence and 295 K chlorophyll a fluorescence spectral results indicated that the energy delivery from phycobilisomes to PSII reaction centers was partially inhibited or uncoupled in this mutant. Moreover, WR7Lα cyt b559 mutant cells were more susceptible to photoinhibition than wild-type cells under high light conditions. Furthermore, our EPR results indicated that in a significant fraction of mutant reaction centers, the R7Lα cyt b559 mutation induced the displacement of one of the axial histidine ligands to the heme of cyt b559. On the basis of these results, we propose that the Arg7Leu mutation on the α-subunit of cyt b559 alters the interaction between the APC core complex and PSII reaction centers, which reduces energy delivery from the antenna to the reaction center and thus protects mutant cells from DCMU-induced photo-oxidative stress.  相似文献   

2.
Cytochrome (cyt) b559 has been proposed to play an important role in the cyclic electron flow processes that protect photosystem II (PSII) from light-induced damage during photoinhibitory conditions. However, the exact role(s) of cyt b559 in the cyclic electron transfer pathway(s) in PSII remains unclear. To study the exact role(s) of cyt b559, we have constructed a series of site-directed mutants, each carrying a single amino acid substitution of one of the heme axial-ligands, in the cyanobacterium Synechocystis sp. PCC6803. In these mutants, His-22 of the alpha or the beta subunit of cyt b559 was replaced with either Met, Glu, Tyr, Lys, Arg, Cys or Gln. On the basis of oxygen-evolution and chlorophyll a fluorescence measurements, we found that, among all mutants that were constructed, only the H22Kalpha mutant grew photoautotrophically, and accumulated stable PSII reaction centers ( approximately 81% compared to wild-type cells). In addition, we isolated one pseudorevertant of the H22Ybeta mutant that regained the ability to grow photoautotrophically and to assemble stable PSII reaction centers ( approximately 79% compared to wild-type cells). On the basis of 77 K fluorescence emission measurements, we found that energy transfer from the phycobilisomes to PSII reaction centers was uncoupled in those cyt b559 mutants that assembled little or no stable PSII. Furthermore, on the basis of immunoblot analyses, we found that in thylakoid membranes of cyt b559 mutants that assembled little or no PSII, the amounts of the D1, D2, cyt b559alpha and beta polypeptides were very low or undetectable but their CP47 and PsaC polypeptides were accumulated to the wild-type level. We also found that the amounts of cyt b559beta polypeptide were significantly increased (larger than two folds) in thylakoid membranes of cyt b559 H22YbetaPS+ mutant cells. We suspected that the increase in the amounts of cyt b559 H22YbetaPS+ mutant polypeptides in thylakoid membranes might facilitate the assembly of functional PSII in cyt b559 H22YbetaPS+ mutant cells. Moreover, we found that isolated His-tagged PSII particles from H22Kalpha mutant cells gave rise to redox-induced optical absorption difference spectra of cyt b559. Therefore, our results concluded that significant fractions of H22Kalpha mutant PSII particles retained the heme of cyt b559. Finally, this work is the first report of cyt b559 mutants having substitutions of an axial heme-ligands that retain the ability to grow photoautotrophically and to assemble stable PSII reaction centers. These two cyt b559 mutants (H22Kalpha and H22YbetaPS+) and their PSII reaction centers will be very suitable for further biophysical and biochemical studies of the functional role(s) of cyt b559 in PSII.  相似文献   

3.
The functional role of cytochrome (cyt) b559 in photosystem II (PSII) was investigated in H22Kα and Y18Sα cyt b559 mutants of the cyanobacterium Synechocystis sp. PCC6803. H22Kα and Y18Sα cyt b559 mutant carries one amino acid substitution on and near one of heme axial ligands of cyt b559 in PSII, respectively. Both mutants grew photoautotrophically, assembled stable PSII, and exhibited the normal period-four oscillation in oxygen yield. However, both mutants showed several distinct chlorophyll a fluorescence properties and were more susceptible to photoinhibition than wild type. EPR results indicated the displacement of one of the two axial ligands to the heme of cyt b559 in H22Kα mutant reaction centers, at least in isolated reaction centers. The maximum absorption of cyt b559 in Y18Sα mutant PSII core complexes was shifted to 561 nm. Y18Sα and H22Kα mutant PSII core complexes contained predominately the low potential form of cyt b559. The findings lend support to the concept that the redox properties of cyt b559 are strongly influenced by the hydrophobicity and ligation environment of the heme. When the cyt b559 mutations placed in a D1-D170A genetic background that prevents assembly of the manganese cluster, accumulation of PSII is almost completely abolished. Overall, our data support a functional role of cyt b559 in protection of PSII under photoinhibition conditions in vivo.  相似文献   

4.
In this work, we extended the reversible radical pair model which describes energy utilization and electron transfer up to the first quinone electron acceptor (Q(A)) in photosystem II (PSII), by redox reactions involving cytochrome (cyt) b559. In the model, cyt b559 accepts electrons from the reduced primary electron acceptor in PSII, pheophytin, and donates electrons to the oxidized primary electron donor in PSII (P680+). Theoretical simulations of chlorophyll fluorescence rise based on the model show that the maximal fluorescence, F(M), increases with an increasing amount of initially reduced cyt b559. In this work we applied, the first to our knowledge, metabolic control analysis (MCA) to a model of reactions in PSII. The MCA was used to determine to what extent the reactions occurring in the model control the F(M) level and how this control depends on the initial redox state of cyt b559. The simulations also revealed that increasing the amount of initially reduced cyt b559 could protect PSII against photoinhibition. Also experimental data, which might be used to validate our theory, are presented and discussed.  相似文献   

5.
In this work, the effect of the exogenously added ascorbate (Asc) against the UV-B inhibition of the photosystem II (PSII) functions in isolated pea thylakoid membranes was studied. The results reveal that Asc decreases the UV-B induced damage of the donor and the acceptor side of PSII during short treatment up to 60 min. The exogenous Asc exhibits a different UV-protective effect on PSII centers in grana and stroma lamellae, as the effect is more pronounced on the PSIIβ centers in comparison to PSIIα centers. Data also suggest that one of the possible protective roles of the Asc in photosynthetic membranes is the modification of the oxygen-evolving complex by influence on the initial S0S1 state distribution in the dark.  相似文献   

6.
Pavel Pospíšil  Arjun Tiwari 《BBA》2010,1797(4):451-456
The effect of illumination and molecular oxygen on the redox and the redox potential changes of cytochrome b559 (cyt b559) has been studied in Tris-treated spinach photosystem II (PSII) membranes. It has been demonstrated that the illumination of Tris-treated PSII membranes induced the conversion of the intermediate-potential (IP) to the reduced high-potential (HPFe2+) form of cyt b559, whereas the removal of molecular oxygen resulted in the conversion of the IP form to the oxidized high-potential (HPFe3+) form of cyt b559. Light-induced conversion of cyt b559 from the IP to the HP form was completely inhibited above pH 8 or by the modification of histidine ligand that prevents its protonation. Interestingly, no effect of high pH or histidine modification was observed during the conversion of the IP to the HP form of cyt b559 after the removal of molecular oxygen. These results indicate that conversion from the IP to the HP form of cyt b559 proceeds via different mechanisms. Under illumination, conversion of the IP to the HP form of cyt b559 depends primarily on the protonation of the histidine residue, whereas under anaerobic conditions, the conversion of the IP to the HP form of cyt b559 is driven by higher hydrophobicity of the environment around the heme iron resulting from the absence of molecular oxygen.  相似文献   

7.
Arjun Tiwari 《BBA》2009,1787(8):985-994
This study provides evidence for the superoxide oxidase and the superoxide reductase activity of cytochrome b559 (cyt b559) in PSII. It is reported that in Tris-treated PSII membranes upon illumination, both the intermediate potential (IP) and the reduced high potential (HPred) forms of cyt b559 exhibit superoxide scavenging activity and interconversion between IP and HPred form. When Tris-treated PSII membranes were illuminated in the presence of spin trap EMPO, the formation of superoxide anion radical (O2) was observed, as confirmed by EPR spin-trapping spectroscopy. The observations that the addition of enzymatic (superoxide dismutase) and non-enzymatic (cytochrome c, α-tocopherol and Trolox) O2 scavengers prevented the light-induced conversion of IP ↔ HPred cyt b559 confirmed that IP and HPred cyt b559 are reduced and oxidized by O2, respectively. Redox changes in cyt b559 by an exogenous source of O2 reconfirmed the superoxide oxidase and reductase activity of cyt b559. Furthermore, the light-induced conversion of IP to HPred form of cyt b559 was completely inhibited at pH > 8 and by chemical modification of the imidazole ring of histidine residues using diethyl pyrocarbonate. We proposed that a change in the environment around the heme iron, induced by the protonation and deprotonation of His22 residue generates a favorable condition for the oxidation and reduction of O2, respectively.  相似文献   

8.
Saber Hamdani 《BBA》2009,1787(10):1223-1229
The interaction of methylamine with chloroplasts' photosystem II (PSII) was studied in isolated thylakoid membranes. Low concentration of methylamine (mM range) was shown to affect water oxidation and the advancement of the S-states. Modified kinetics of chlorophyll fluorescence rise and thermoluminescence in the presence of methylamine indicated that the electron transfer was affected at both sides of PSII, and in particular the electron transfer between YZ and P680+. As the concentration of methylamine was raised above 10 mM, the extrinsic polypeptides associated with the oxygen-evolving complex were lost and energy transfer between PSII antenna complexes and reaction centers was impaired. It was concluded that methylamine is able to affect both extrinsic and intrinsic subunits of PSII even at the lowest concentrations used where the extrinsic polypeptides of the OEC are still associated with the luminal side of the photosystem. As methylamine concentration increases, the extrinsic polypeptides are lost and the interaction with intrinsic domains is amplified resulting in an increased F0.  相似文献   

9.
Han Bao  Yanan Ren  Jingquan Zhao 《BBA》2010,1797(3):339-346
The correlation between the reduction of QA and the oxidation of TyrZ or Car/ChlZ/Cytb559 in spinach PSII enriched membranes induced by visible light at 10 K is studied by using electron paramagnetic resonance spectroscopy. Similar g = 1.95-1.86 QA-•EPR signals are observed in both Mn-depleted and intact samples, and both signals are long lived at low temperatures. The presence of PPBQ significantly diminished the light induced EPR signals from QA-•, Car+•/Chl+• and oxidized Cytb559, while enhancing the amplitude of the S1TyrZ• EPR signal in the intact PSII sample. The quantification and stability of the g = 1.95-1.86 EPR signal and signals arising from the oxidized TyrZ and the side-path electron donors, respectively, indicate that the EPR-detectable g = 1.95-1.86 QA-• signal is only correlated to reaction centers undergoing oxidation of the side-path electron donors (Car/ChlZ/Cytb559), but not of TyrZ. These results imply that two types of QA-• probably exist in the intact PSII sample. The structural difference and possible function of the two types of QA are discussed.  相似文献   

10.
Transglutaminases (TGases, EC 2.3.2.13) are intra- and extra-cellular enzymes that catalyze post-translational modification of proteins by establishing ?-(γ-glutamyl) links and covalent conjugation of polyamines. In chloroplast it is well established that TGases specifically polyaminylate the light-harvesting antenna of Photosystem (PS) II (LHCII, CP29, CP26, CP24) and therefore a role in photosynthesis has been hypothesised (Della Mea et al. [23] and refs therein). However, the role of TGases in chloroplast is not yet fully understood. Here we report the effect of the over-expression of maize (Zea mays) chloroplast TGase in tobacco (Nicotiana tabacum var. Petit Havana) chloroplasts. The transglutaminase activity in over-expressers was increased 4 times in comparison to the wild-type tobacco plants, which in turn increased the thylakoid associated polyamines about 90%. Functional comparison between Wt tobacco and tgz over-expressers is shown in terms of fast fluorescence induction kinetics, non-photochemical quenching of the singlet excited state of chlorophyll a and antenna heterogeneity of PSII. Both in vivo probing and electron microscopy studies verified thylakoid remodeling. PSII antenna heterogeneity in vivo changes in the over-expressers to a great extent, with an increase of the centers located in grana-appressed regions (PSIIα) at the expense of centers located mainly in stroma thylakoids (PSIIβ). A major increase in the granum size (i.e. increase of the number of stacked layers) with a concomitant decrease of stroma thylakoids is reported for the TGase over-expressers.  相似文献   

11.
Oxygen consumption in Mn-depleted photosystem II (PSII) preparations under continuous and pulsed illumination is investigated. It is shown that removal of manganese from the water-oxidizing complex (WOC) by high pH treatment leads to a 6-fold increase in the rate of O2 photoconsumption. The use of exogenous electron acceptors and donors to PSII shows that in Mn-depleted PSII preparations along with the well-known effect of O2 photoreduction on the acceptor side of PSII, there is light-induced O2 consumption on the donor side of PSII (nearly 30% and 70%, respectively). It is suggested that the light-induced O2 uptake on the donor side of PSII is related to interaction of O2 with radicals produced by photooxidation of organic molecules. The study of flash-induced O2 uptake finds that removal of Mn from the WOC leads to O2 photoconsumption with maximum in the first flash, and its yield is comparable with the yield of O2 evolution on the third flash measured in the PSII samples before Mn removal. The flash-induced O2 uptake is drastically (by a factor of 1.8) activated by catalytic concentration (5-10 μM, corresponding to 2-4 Mn per RC) of Mn2+, while at higher concentrations (> 100 μM) Mn2+ inhibits the O2 photoconsumption (like other electron donors: ferrocyanide and diphenylcarbazide). Inhibitory pre-illumination of the Mn-depleted PSII preparations (resulting in the loss of electron donation from Mn2+) leads to both suppression of flash-induced O2 uptake and disappearance of the Mn-induced activation of the O2 photoconsumption. We assume that the light-induced O2 uptake in Mn-depleted PSII preparations may reflect not only the negative processes leading to photoinhibition but also possible participation of O2 or its reactive forms in the formation of the inorganic core of the WOC.  相似文献   

12.
Pavel Pospíšil 《BBA》2009,1787(10):1151-1160
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) — a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.  相似文献   

13.
The D1 protein of Photosystem II (PSII) is recognized as the main target of photoinhibitory damage and exhibits a high turnover rate due to its degradation and replacement during the PSII repair cycle. Damaged D1 is replaced by newly synthesized D1 and, although reasonable, there is no direct evidence for selective replacement of damaged D1. Instead, it remains possible that increased turnover of D1 subunits occurs in a non-selective manner due for example, to a general up-regulation of proteolytic activity triggered during damaging environmental conditions, such as high light. To determine if D1 degradation is targeted to damaged D1 or generalized to all D1, we developed a genetic system involving simultaneous dual expression of wild type and mutant versions of D1 protein. Dual D1 strains (nS345P:eWT and nD170A:eWT) expressed a wild type (WT) D1 from ectopic and a damage prone mutant (D1-S345P, D1-D170A) from native locus on the chromosome. Characterization of strains showed that all dual D1 strains restore WT like phenotype with high PSII activity. Higher PSII activity indicates increased population of PSII reaction centers with WT D1. Analysis of steady state levels of D1 in nS345P:eWT by immunoblot showed an accumulation of WT D1 only. But, in vivo pulse labeling confirmed the synthesis of both S345P (exists as iD1) and WT D1 in the dual strain. Expression of nS345P:eWT in FtsH2 knockout background showed accumulation of both iD1 and D1 proteins. This demonstrates that dual D1 strains express both forms of D1, yet only damage prone PSII complexes are selected for repair providing evidence that the D1 degradation process is targeted towards damaged PSII complexes. Since the N-terminus has been previously shown to be important for the degradation of damaged D1, the possibility that the highly conserved cysteine 18 residue situated in the N-terminal domain of D1 is involved in the targeted repair process was tested by examining site directed mutants of this and the other cysteines of the D1 protein. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

14.
Cytochrome (cyt) b559, an integral membrane protein, is an essential component of the photosystem II (PSII) complex in the thylakoid membranes of oxygenic photosynthetic organisms. Cyt b559 has two subunits, alpha and beta, each with one predicted membrane spanning alpha-helical domain. The heme cofactor of this cytochrome is coordinated between two histidine residues. Each of the two subunit polypeptides of cyt b559 has one His residue. To investigate the influence of these His residues on the structure of cyt b559 and the PSII complex, we used a site directed mutagenesis approach to replace each His residue with a Leu residue. Introduction of these missense mutations in the transformable unicellular cyanobacterium, Synechocystis 6803, resulted in complete loss of PSII activity. Northern blot analysis showed that these mutations did not affect the stability of the polycistronic mRNA that encompasses both the psbE and the psbF genes, encoding the alpha and the beta subunits, respectively. Moreover, both of the single His mutants showed the presence of the alpha subunit which was 1.5 kd smaller than the same polypeptide in wild type cells. A secondary effect of such a structural change was that D1 and D2, two proteins that form the catalytic core (reaction center) of PSII, were also destabilized. Our results demonstrate that proper axial coordination of the heme cofactor in cyt b559 is important for the structural integrity of the reaction center of PSII.  相似文献   

15.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   

16.
Cytochrome b559 is an essential component of the photosystem II reaction center in photosynthetic oxygen-evolving organisms, but its function still remains unclear. The use of photosystem II preparations from Thermosynechococcus elongatus of high integrity and activity allowed us to measure for the first time the influence of cytochrome b559 mutations on its midpoint redox potential and on the reduction of the cytochrome b559 by the plastoquinone pool (or QB). In this work, five mutants having a mutation in the α-subunit (I14A, I14S, R18S, I27A and I27T) and one in the β-subunit (F32Y) of cytochrome b559 have been investigated. All the mutations led to a destabilization of the high potential form of the cytochrome b559. The midpoint redox potential of the high potential form was significantly altered in the αR18S and αI27T mutant strains. The αR18S strain also showed a high sensitivity to photoinhibitory illumination and an altered oxidase activity. This was suggested by measurements of light induced oxidation and dark re-reduction of the cytochrome b559 showing that under conditions of a non-functional water oxidation system, once the cytochrome is oxidized by P680+, the yield of its reduction by QB or the PQ pool was smaller and the kinetic slower in the αR18S mutant than in the wild-type strain. Thus, the extremely positive redox potential of the high potential form of cytochrome b559 could be necessary to ensure efficient oxidation of the PQ pool and to function as an electron reservoir replacing the water oxidation system when it is not operating.  相似文献   

17.
Cytochrome b559 in various Photosystem II preparations was studled by using low temperature ESR spectroscopy. This technique was used because it is able to distinguish high from low potential forms of the cytochrome owing to the g-value differences between these species. Moreover, by using low temperature irradiation to oxidize cyt b559 we have avoided the use of redox mediators. Previous work (Ghanotakis DF., Topper J.N. and Yocum, C.F. (1984) Biochim. Biophys. Acta 767, 524–531) demonstrated that reduction and extraction of manganese of the oxygen evolving complex, which might be expected to alter the redox properties of cyt b559, occurs when certain PSII preparations are exposed to reductants. The ESR data presented here show that a mixture of high potential and lower potential cyt b559 species is observed in the oxygen evolving Photosystem II complex. Treatment of PSII membranes with 0.8 M Tris converts the high potential form(s) to those of lower potential. Exposure of the membranes to 2M NaCl shifts a significant amount of high potential cyt b559 to lower potential form(s); addition of CaCl2 reconstituted oxygen evolution activity but did not restore cyt b559 to its high potential form(s).Abbreviations Chl chlorophyll - cyt cytochrome - DCBQ 2,5-dichloro-benzoquinone - DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone - ESR electron spin resonance - OEC oxygen evolving complex - PS photosystem Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   

18.
It has been known that arginine is used as the basic amino acid in the ?subunit of cytochrome b559 (Cyt b559) except histidine. However, previous studies have focused on the function of histidine in the activities of photosystem (PS) Ⅱ and there are no reports regarding the structural and/or functional roles of arginine in PSII complexes. In the present study,two arginine18 (R18) mutants of Chlamydomonas reinhardtii were constructed using site-directed mutagenesis, in which R18 was replaced by glutamic acid (E) and glycine (G). The results show that the oxygen evolution of the PSII complex in the R18G and R18E mutants was approximately 60% of wild-type (WT) levels and that, after irradiation at high light intensity, oxygen evolution for the PSII of mutants was reduced to zero compared with 40% in WT cells. The efficiency of light capture by PSII (Fv/Fm) of R18G and R18E mutants was approximately 42%-46% that of WT cells. Furthermore, levels of the ?subunit of Cyt b559 and PsbO proteins were reduced in thylakoid membranes compared with WT. Overall, these data suggest that R18 plays a significant role in helping Cyt b559 maintain the structure of the PSII complex and its activity,although it is not directly bound to the heme group.  相似文献   

19.
《BBA》2002,1554(3):192-201
Properties of the Photosystem II (PSII) complex were examined in the wild-type (control) strain of the cyanobacterium Synechocystis PCC 6803 and its site-directed mutant D1-His252Leu in which the histidine residue 252 of the D1 polypeptide was replaced by leucine. This mutation caused a severe blockage of electron transfer between the PSII electron acceptors QA and QB and largely inhibited PSII oxygen evolving activity. Strong illumination induced formation of a D1-cytochrome b-559 adduct in isolated, detergent-solubilized thylakoid membranes from the control but not the mutant strain. The light-induced generation of the adduct was suppressed after prior modification of thylakoid proteins either with the histidine modifier platinum-terpyridine-chloride or with primary amino group modifiers. Anaerobic conditions and the presence of radical scavengers also inhibited the appearance of the adduct. The data suggest that the D1-cytochrome adduct is the product of a reaction between the oxidized residue His252 of the D1 polypeptide and the N-terminal amino group of the cytochrome α subunit. As the rate of the D1 degradation in the control and mutant strains is similar, formation of the adduct does not seem to represent a required intermediary step in the D1 degradation pathway.  相似文献   

20.
Under physiological conditions (278 K) femtosecond pump-probe laser spectroscopy with 20-fs time resolution was applied to study primary charge separation in spinach photosystem II (PSII) core complexes excited at 710 nm. It was shown that initial formation of anion radical band of pheophytin molecule (Pheo) at 460 nm is observed with rise time of ~ 11 ps. The kinetics of the observed rise was ascribed to charge separation between Chl (chlorophyll a) dimer, primary electron donor in PSII (P680*) and Pheo located in D1 protein subunit (PheoD1) absorbing at 420 nm, 545 nm and 680 nm with formation of the ion-radical pair P680+PheoDI. The subsequent electron transfer from PheoD1 to primary plastoquinone electron acceptor (QA) was accompanied by relaxation of the 460-nm band and occurred within ~ 250 ps in good agreement with previous measurements in Photosystem II-enriched particles and bacterial reaction centers. The subtraction of the P680+ spectrum measured at 455 ps delay from the spectra at 23 ps or 44 ps delay reveals the spectrum of PheoDI, which is very similar to that measured earlier by accumulation method. The spectrum of PheoDI formation includes a bleaching (or red shift) of the 670 nm band indicating that Chl-670 is close to PheoD1. According to previous measurements in the femtosecond–picosecond time range this Chl-670 was ascribed to ChlD1 [Shelaev, Gostev, Vishnev, Shkuropatov, Ptushenko, Mamedov, Sarkisov, Nadtochenko, Semenov and Shuvalov, J. Photochemistry and Photobiology, B: Biology 104 (2011) 45–50]. Stimulated emission at 685 nm was found to have two decaying components with time constants of ~ 1 ps and ~ 14 ps. These components appear to reflect formation of P680+ChlD1 and P680+PheoD1, respectively, as found earlier. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号