首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion of plastoquinol and its binding to the Qo site of the cyt bf complex in the course of photosynthetic electron transport was studied by following the sigmoidal flash-induced re-reduction kinetics of P700 after previous oxidation of the intersystem electron carriers. The data resulting from these experiments were matched with a simulation of electron transport using Monte Carlo techniques. The simulation was able to account for the experimental observations. Two different extreme cases of reaction mechanism at the Qo site were compared: a diffusion limited collisional mechanism and a non-diffusion limited tight binding mechanism. Assuming a tight binding mechanism led to best matches due to the high protein density in thylakoids. The varied parameters resulted in values well within the range of published data. The results emphasise the importance of structural characteristics of thylakoids in models of electron transport.  相似文献   

2.
Thylakoid membranes isolated from cold tolerant, herbaceous monocots and dicots grown at 5°C exhibit a 1.5-fold to 2.7-fold increase in light saturated rates of photosystem I (PSI) electron transport compared to thylakoids isolated from the same plant species grown at 20°C. This was observed only when either water or reduced dichlorophenolindophenol was used as an electron donor. The apparent quantum yield for PSI electron transport was not affected by growth temperature. The higher light saturated rates of PSI electron transport in 5°C thylakoids had an absolute requirement for the presence of Na+ and Mg+2. The accessibility of reduced dichlorophenolindophenol to the donor site was not affected by growth temperature since 5°C and 20°C thylakoids exhibited no significant difference in the concentration of this electron donor required for half-maximal PSI activity. The cation dependent higher rates of light saturated PSI activity were also observed when rye thylakoids were developed under intermittent light conditions at 5°C. Thus, this cation effect on PSI activity appeared to be independent of light harvesting complex I and II. The extent of the in vitro reversibility of this cation effect appeared to be limited by an inherent decay process for PSI electron transport. The rate of decay for PSI activity was greatest when thylakoids were isolated in the absence of NaCl and MgCl2. We conclude that exposure of plants to low growth temperatures induces a reorganization of thylakoid membranes which increases the light saturated rates of PSI electron transport with no change in the apparent quantum efficiency for this reaction. Cations are required to stabilize this reorganization.  相似文献   

3.
Reduction kinetics of cytochrome f, plastocyanin (PC) and P700 (‘high-potential chain’) in thylakoids from spinach were followed after pre-oxidation by a saturating light pulse. We describe a novel approach to follow PC redox kinetics from deconvolution of 810-860 nm absorption changes. The equilibration between the redox-components was analyzed by plotting the redox state of cytochrome f and PC against that of P700. In thylakoids with (1) diminished electron transport rate (adjusted with a cytochrome bf inhibitor) or (2) de-stacked grana, cytochrome f and PC relaxed close to their thermodynamic equilibriums with P700. In stacked thylakoids with non-inhibited electron transport, the equilibration plots were complex and non-hyperbolic, suggesting that during fast electron flux, the ‘high-potential chain’ does not homogeneously equilibrate throughout the membrane. Apparent equilibrium constants <5 were calculated, which are below the thermodynamic equilibrium known for the ‘high potential chain’. The disequilibrium found in stacked thylakoids with high electron fluxes is explained by restricted long-range PC diffusion. We develop a model assuming that about 30% of Photosystem I mainly located in grana end-membranes and margins rapidly equilibrate with cytochrome f via short-distance transluminal PC diffusion, while long-range lateral PC migration between grana cores and distant stroma lamellae is restricted. Implications for the electron flux control are discussed.  相似文献   

4.
Partial photochemical activities and concentrations of electron carriers were measured relative to chlorophyll in barley (Hordeum vulgare L.) thylakoids, isolated from primary leaves during ontogeny and senescence. Thylakoids from mature leaves generated somewhat higher quantum efficiencies than thylakoids from premature or senescing leaves; this phenomenon did not appear to be caused by any deficiency of water-splitting enzyme. Under conditions of saturating light, the noncyclic electron flux from water to the reducing side of photosystem I increased during leaf ontogeny, peaked at maturity, and declined during senescence. However, electron fluxes appeared to be limited at different steps before and after leaf maturity. Before leaf maturity, the rate-limiting step was located prior to the reoxidation of plastohydroquinone. After leaf maturity, the decline in noncyclic electron flux correlated with a decrease in the concentration of cytochromes f and b6. This correlation, together with a consideration of mechanisms of entry and exit of electrons in 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated thylakoids, suggests that the cytochrome f/b6-containing complex, and not plastocyanin or P700, is the site of entry of electrons from the reduced forms of 2,6-dichlorophenolindophenol and diaminodurene. It is therefore proposed that in senescing leaves the cytochrome f/b6-containing complex limited electron transport by constraining the rate of reduction of cytochrome f by plastohydroquinone.  相似文献   

5.
The diffusion of plastoquinol and its binding to the cytochrome bf complex, which occurs during linear photosynthetic electron transport and is analogous to reaction sequences found in most energy-converting membranes, has been studied in intact thylakoid membranes. The flash-induced electron transfer between the laterally separated photosystems II and photosystems I was measured by following the sigmoidal reduction kinetics of P-700+ after previous oxidation of the intersystem electron carriers. The amount of flash-induced plastoquinol produced at photosystem II was (a) reduced by inhibition with dichlorophenyl-dimethylurea and (b) increased by giving a second saturating flash. These signals were simulated by a new model which combines a deterministic simulation of reaction kinetics with a Monte Carlo approach to the diffusion of plastoquinol, taking into account the known structural features of the thylakoid membrane. The plastoquinol molecules were assumed to be oxidized by either a diffusion-limited or a nondiffusion-limited step in a collisional mechanism or after binding to the cytochrome bf complex. The model was able to account for the experimental observations with a nondiffusion-limited collisional mechanism or with a binding mechanism, giving minimum values for the diffusion coefficient of plastoquinol of 2 × 10-8 cm2s-1 and 3 × 10-7 cm2s-1, respectively.  相似文献   

6.
The mechanism of chilling resistance was investigated in 4-week-old plants of the chilling-sensitive cultivated tomato, Lycopersicon esculentum Mill. cv H722, and rooted cuttings of its chilling-resistant wild relative, L. hirsutum Humb. and Bonpl., which were chilled for 3 days at 2°C with a 14-hour photoperiod and light intensity of 250 micromoles per square meter per second. This chilling stress reduced the chlorophyll fluorescence ratio, stomatal conductance, and dry matter accumulation more in the sensitive L. esculentum than in the resistant L. hirsutum. Photosynthetic CO2 uptake at the end of the chilling treatment was reduced more in the resistant L. hirsutum than in L. esculentum, but recovered at a faster rate when the plants were returned to 25°C. The reduction of the spin trap, Tiron, by isolated thylakoids at 750 micromoles per square meter per second light intensity was taken as a relative indication of the tendency for the thylakoids to produce activated oxygen. Thylakoids isolated from the resistant L. hirsutum with or without chilling treatment were essentially similar, whereas those from chilled leaves of L. esculentum reduced more Tiron than the nonchilled controls. Whole chain photosynthetic electron transport was measured on thylakoids isolated from chilled and control leaves of the two species at a range of assay temperatures from 5 to 25°C. In both species, electron transport of the thylakoids from chilled leaves was lower than the controls when measured at 25°C, and electron transport declined as the assay temperature was reduced. However, the temperature sensitivity of thylakoids from chilled L. esculentum was altered such that at all temperatures below 20°C, the rate of electron transport exceeded the control values. In contrast, the thylakoids from chilled L. hirsutum maintained their temperature sensitivity, and the electron transport rates were proportionately reduced at all temperatures. This sublethal chilling stress caused no significant changes in thylakoid galactolipid, phospholipid, or protein levels in either species. Nonchilled thylakoid membranes from L. hirsutum had fourfold higher levels of the fatty acid 16:1, than those from L. esculentum. Chilling caused retailoring of the acyl chains in L. hirsutum but not in L. esculentum. The chilling resistance of L. hirsutum may be related to an ability to reduce the potential for free radical production by close regulation of electron transport within the chloroplast.  相似文献   

7.
Although glutaraldehyde alkylates protein NH2 groups to the same extent in unstacked and stacked thylakoids, the photosynthetic electron transport of the stacked membranes is always more inhibited. Inhibition of photosystem II electron transport, measured in the presence of lipophilic Hill oxidants, is 20–30% in unstacked and 60–70% in stacked thylakoids. Photosystem I electron transport is nearly completely inhibited in both preparations, but in the case of stacked thylakoids maximal inhibition occurs at a lower glutaraldehyde level than in unstacked thylakoids. In contrast, the photooxidation of the reaction center chromophore of photosystem I (P700) is unaffected by the glutaraldehyde treatment of either stacked or unstacked chloroplasts. The results are discussed with regard to the accessibility of membrane sites to exogenous electron transport cofactors, in view of the observation that N-methylphenazonium methosulfate, a quencher of electronically excited chlorophyll a, partitions more easily into the pigment domains of the glutaraldehyde-fixed unstacked thylakoids.  相似文献   

8.
In vivo measurements of chlorophyll a fluorescence indicate that cold-hardened winter rye (Secale cereale L. cv Musketeer) develops a resistance to low temperature-induced photoinhibition compared with nonhardened rye. After 7.2 hours at 5°C and 1550 micromoles per square meter per second, the ratio of variable fluorescence/maximum fluorescence was depressed by only 23% in cold-hardened rye compared with 46% in nonhardened rye. We have tested the hypothesis that the principal site of this resistance to photoinhibition resides at the level of rye thylakoid membranes. Thylakoids were isolated from cold-hardened and nonhardened rye and exposed to high irradiance (1000-2600 micromoles per square meter per second) at either 5 or 20°C. The photoinhibitory response measured by room temperature fluorescence induction, photosystem II electron transport, photoacoustic spectroscopy, or [14C]atrazine binding indicates that the differential resistance to low temperature-induced photoinhibition in vivo is not observed in isolated thylakoids. Similar results were obtained whether isolated rye thylakoids were photoinhibited or thylakoids were isolated from rye leaves preexposed to a photoinhibitory treatment. Thus, we conclude that increased resistance to low temperature-induced photoinhibition is not a property of thylakoid membranes but is associated with a higher level of cellular organization.  相似文献   

9.
Exposure of leaves to SO2 or bisulfite is known to induce peroxidation of thylakoid lipids and to inhibit photosynthetic electron transport. In the present study, we have examined the temporal relationship between bisulfite-induced thylakoid lipid peroxidation and inhibition of electron transport in an attempt to clarify the primary mechanism of SO2 phytotoxicity. Primary leaves of bean (Phaseolus vulgaris L. cv Kinghorn) were floated on a solution of NaHSO3, and the effects of this treatment on photosynthetic electron transport were determined in vivo by measurements of chlorophyll a fluorescence induction and in vitro by biochemical measurements of the light reactions using isolated thylakoids. Lipid peroxidation in treated leaves was followed by monitoring ethane emission from leaf segments and by measuring changes in fatty acid composition and lipid fluidity in isolated thylakoids. A 1 hour treatment with bisulfite inhibited photosystem II (PSII) activity by 70% without modifying Photosystem I, and this inhibitory effect was not light-dependent. By contrast, lipid peroxidation was not detectable until after the inhibition of PSII and was strongly light dependent. This temporal separation of events together with the differential effect of light suggests that bisulfite-induced inhibition of PSII is not a secondary effect of lipid peroxidation and that bisulfite acts directly on one or more components of PSII.  相似文献   

10.
《BBA》1987,894(2):165-173
The capacity of ribulose-1,5-bisphosphate carboxylase to bind reversibly chloroplast metabolites which are the substrates for both thylakoid and stromal enzymes was assessed using spinach chloroplasts and chloroplast extracts and with pure wheat ribulose-1,5-bisphosphate carboxylase. Measurements of the rate of coupled electron flow to methyl viologen in ‘leaky’ chloroplasts (which retained the chloroplast envelope and stromal enzymes but which were permeable to metabolites) and also with broken chloroplasts and washed thylakoids were used to study the effects of binding ADP and inorganic phopshate to ribulose-1,5-bisphosphate carboxylase. The presence of ribulose-1,5-bisphosphate carboxylase significantly altered the values obtained for apparent Km for inorganic phosphate and ADP of coupled electron transport. The Km (Pi) in washed thylakoids was 60–80 μM, in ‘leaky’ chloroplasts it was increased to 180–200 μM, while in ‘leaky’ chloroplasts preincubated with KCN and ribulose 1,5-bisphosphate the value was decreased to 40–50 μM. Similarly, the Km (ADP) of coupled electron transport in washed thylakoids was 60–70 μM, in ‘leaky’ chloroplasts it was 130–150 μM and with ‘leaky’ chloroplasts incubated in the presence of KCN and ribulose 1,5-bisphosphate a value of 45–50 μM was obtained. The ability of ribulose 1,5-bisphosphate carboxylase to reduce the levels of free glycerate 3-phosphate in the absence of ribulose 1,5-bisphosphate was examined using a chloroplast extract system by varying the concentrations of stromal protein or purified ribulose 1,5-bisphosphate carboxylase. The effect of binding glycerate 3-phosphate to ribulose-1,5-bisphosphate carboxylase on glycerate 3-phosphate reduction was to reduce both the rate an the amount of NADPH oxidation for a given amount of glycerate 3-phosphate added. The addition of ribulose 1,5-bisphosphate reinitiated NADPH oxidation but ATP or NADPH did not. Incubation of purified ribulose-1,5-bisphosphate carboxylase with carboxyarabinitolbisphosphate completely inhibited the catalytic activity of the enzyme and decreased inhibition of glycerate-3-phosphate reduction. Two binding sites with different affinities for glycerate 3-phosphate were observed with pure ribulose-1,5-bisphosphate carboxylase.  相似文献   

11.
The sites and rates of mitochondrial production of superoxide and H2O2 in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2 in vivo.  相似文献   

12.
13.
6-Azido-5-decyl-2,3-dimethoxy-p-benzoquinone (6-azido-Q0C10) was found to replace the native plastoquinone at B (the second stable electron acceptor to Photosystem II (PS II)). The 6-azido-Q10C10 would accept electrons from the primary electron-accepting quinone, Q, thus allowing electron transport through PS II to the plastoquinone pool in thylakoids. The synthetic azidoquinone also competes with the PS II herbicides ioxynil and atrazine for binding. This observation strongly favors the hypothesis that PS II herbicides block electron transport by replacing the native quinone which acts as the second electron carrier on the reducing side of PS II (termed B). Covalent linkage of 6-azido-Q0C10 to its binding environment by ultraviolet irradiation greatly reduces herbicide-binding affinity but does not lead to a loss in herbicide-binding sites. We take this as evidence that covalent attachment of 6-azido-Q0C10 allows some freedom of quinone head-group movement such that the herbicides can enter the binding site. This indicates that the protein determinants which regulate quinone and herbicide binding are very closely related, but not identical. A compound somewhat related to 6-azido-Q0C10 is 2-azido-3-methoxy-5-geranyl-6-methyl-p-benzoquinone (2-azido-Q2). This compound was found to be an ineffective competitor with respect to herbicide binding. Thus, interactions with protein-binding determinants are highly dependent on the molecular structure of quinones. The 2-azido-Q2 was an inhibitor of electron flow in the intersystem portion of the chain.  相似文献   

14.
《BBA》2022,1863(5):148555
In land plants, both efficient light capture and photoprotective dissipation of chlorophyll excited states in excess require proper assembly of Photosystem II supercomplexes PSII-LHCs. These include a dimeric core moiety and a peripheral antenna system made of trimeric LHCII proteins connected to the core through monomeric LHC subunits. Regulation of light harvesting involves re-organization of the PSII supercomplex, including dissociation of its LHCII-CP24-CP29 domain under excess light. The Chl a603-a609-a616 chromophore cluster within CP29 was recently identified as responsible for the fast component of Non-Photochemical Quenching of chlorophyll fluorescence. Here, we pinpointed a chlorophyll-protein domain of CP29 involved in the macro-organization of PSII-LHCs. By complementing an Arabidopsis knock-out mutant with CP29 sequences deleted in the residue binding chlorophyll b614/b3-binding, we found that the site is promiscuous for chlorophyll a and b. By plotting NPQ amplitude vs. CP29 content we observed that quenching activity was significantly reduced in mutants compared to the wild type. Analysis of pigment-binding supercomplexes showed that the missing Chl did hamper the assembly of PSII-LHCs supercomplexes, while observation by electron microscopy of grana membranes highlighted the PSII particles were organized in two-dimensional arrays in mutant grana partitions. As an effect of such array formation electron transport rate between QA and QB reduced, likely due to restricted plastoquinone diffusion. We conclude that chlorophyll b614, rather being part of pigment cluster responsible for quenching, is needed to maintain full rate of electron flow in the thylakoids by controlling protein-protein interactions between PSII units in grana partitions.  相似文献   

15.
Thylakoids isolated from winter rye (Secale cereale L. cv Muskateer) grown at 5°C or 20°C were compared with respect to their capacity to exhibit an increase in light saturated rates of photosystem I (PSI) electron transport (ascorbate/dichlorophenolindophenol → methylviologen) after dark preincubation at temperatures between 0 and 60°C. Thylakoids isolated in the presence or absence of Na+/Mg2+ from 20°C grown rye exhibited transient, 40 to 60% increases in light saturated rates of PSI activity at all preincubation temperatures between 5 and 60°C. This increase in PSI activity appeared to occur independently of the electron donor employed. The capacity to exhibit this in vitro induced increase in PSI activity was examined during biogenesis of rye thylakoids under intermittent light conditions at 20°C. Only after exposure to 48 cycles (1 cycle = 118 minutes dark + 2 min light) of intermittent light did rye thylakoids exhibit an increase in light saturated rates of PSI activity even though PSI activity could be detected after 24 cycles. In contrast to thylakoids from 20°C grown rye, thylakoids isolated from 5°C grown rye in the presence of Na+/Mg2+ exhibited no increase in light saturated PSI activity after preincubation at any temperature between 0 and 60°C. This was not due to damage to PSI electron transport in thylakoids isolated from 5°C grown plants since light saturated PSI activity was 60% higher in 5°C thylakoids than 20°C thylakoids prior to in vitro dark preincubation. However, a two-fold increase in light saturated PSI activity of 5°C thylakoids could be observed after dark preincubation only when 5°C thylakoids were initially isolated in the absence of Na+/Mg2+. We suggest that 5°C rye thylakoids, isolated in the presence of these cations, exhibit light saturated PSI electron transport which may be closer to the maximum rate attainable in vitro than 20°C thylakoids and hence cannot be increased further by dark preincubation.  相似文献   

16.
In order to study the effects of desiccation on a photosynthetic system, light harvesting and light-induced electron transport processes were examined in pea cotyledons at various moisture levels, using in vivo fluorescence excitation spectra and fluorescence induction kinetics. Water sorption isotherms yielded thermodynamic data that suggested very strong water binding between 4 to 11% water, intermediate sorption between water contents of 13 to 22%, and very weak binding at moisture contents between 24 to 32%. The fluorescence properties of the tissue changed with the moisture contents, and these changes correlated generally with the three regions of water binding. Peak fluorescence and fluorescence yield remained at low levels when water content was limited to the tightly bound regions, below 12%. Several new peaks appeared in the chlorophyll a excitation spectrum and both peak fluorescence and fluorescence yield increased at intermediate water-binding levels (12-22%). At moisture contents where water is weakly bound (>24%), peak fluorescence and fluorescence yield were maximum and the fluorescence excitation spectrum was unchanging with further increases in water content.

The state of water is an important component in the energy transfer and electron transport system. At hydration levels where water is most tightly bound, energy transfer from pigments is limited and electron transport is blocked. At intermediate water binding levels, energy transfer and electron transport increase and, in the region of weak water binding, energy transfer and electron transport are maximized.

  相似文献   

17.
Plastocyanin diffusion in the thylakoid lumen and its binding to cytochrome f (a subunit of the membrane b 6 f complex) were studied with a direct multiparticle simulation model that could also take account of their electrostatic interaction. Experimental data were used to estimate the model parameters for plastocyanin-cytochrome f complexing in solution. The model was then employed to assess the dependence of the association rate constant on the dimensions of the lumen. Highest rates were obtained at a lumen span of 8–10 nm; narrowing of the lumen below 7 nm resulted in drastic deceleration of complexing. This corresponded to the experimentally observed effect of hyperosmotic stress on the interaction between plastocyanin and cytochrome f in thylakoids.  相似文献   

18.
The effect of p-phenylenediamine and dibromothymoquinone (DBMIB) on photosynthetic electron transport was studied using thylakoids from barley chloroplasts. p-Phenylenediamine (0.1 mm) converted the light saturation curve for electron transport between water and ferricyanide from a hyperbolic one saturating at low light intensity into a linear one which was not saturated at any light intensity studied. DBMIB at a concentration of 1 μm had little inhibitory effect on the basal electron transport activity of coupled thylakoids in either the presence or the absence of 0.1 mmp-phenylenediamine. However, activity was inhibited by DBMIB after uncoupling with 60 mm methylamine. These results may indicate that there is a rate-limiting step in electron transport at or after plastoquinone which is circumvented by phenylenediamine. Its appearance or elaboration could explain the conversion of a linear light saturation curve to a hyperbolic one during chloroplast development. The movement of protons into thylakoids upon illumination was reduced about 50% by 1 μm DBMIB, a concentration which maximally inhibits ferricyanide-Hill activity after uncoupling. Fifty percent inhibition occurred irrespective of whether or not phenylenediamine was included in the reaction mixture. Most of the residual DBMIB-insensitive pH change was inhibited by 3 μm 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU), suggesting that photosystem II was required for the latter activity. In the presence of both DBMIB and DCMU, proton pump activity could be reestablished by including isoascorbate and p-phenylenediamine in the reaction mixture.  相似文献   

19.
In cyanobacteria and chloroplasts, thylakoids are the complex internal membrane system where the light reactions of oxygenic photosynthesis occur. In plant chloroplasts, thylakoids are differentiated into a highly interconnected system of stacked grana and unstacked stroma membranes. In contrast, in cyanobacteria, the evolutionary progenitors of chloroplasts, thylakoids do not routinely form stacked and unstacked regions, and the architecture of the thylakoid membrane systems is only now being described in detail in these organisms. We used electron tomography to examine the thylakoid membrane systems in one cyanobacterium, Cyanothece sp. ATCC 51142. Our data showed that thylakoids form a complicated branched network with a rudimentary quasi-helical architecture in this organism. A well accepted helical model of grana-stroma architecture of plant thylakoids describes an organization in which stroma thylakoids wind around stacked granum in right-handed spirals. Here we present data showing that the simplified helical architecture in Cyanothece 51142 is lefthanded in nature. We propose a model comparing the thylakoid membranes in plants and this cyanobacterium in which the system in Cyanothece 51142 is composed of non-stacked membranes linked by fret-like connections to other membrane components of the system in a limited left-handed arrangement.Key words: cyanobacteria, Cyanothece 51142, thylakoid membrane, electron tomography, chloroplast  相似文献   

20.
In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant) and Spinacia oleracea (a terrestrial plant) turned Au3+ solutions purple in presence of light of 600 µmol m−2 s−1 photon flux density (PFD) and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au3+ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au3+ to Au0 which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5–20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m−2 s−1. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au3+ to Au0 to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号