首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic initiation factor 2 (eIF2)-associated glycoprotein, p67, has protection of eIF2alpha phosphorylation (POEP) activity, and this activity requires lysine-rich domains I and II of p67. Another unique acidic residue-rich domain is also present at the N-terminus of p67. In this study we analyzed the role of this acidic residue-rich domain in POEP activity. Our data revealed that constitutive expression of a mutant form of p67 (D6/2) in mammalian cells resulted in increased POEP activity, and this activity was partially inhibited when second-site alanine substitutions at the conserved amino acids D251, D262, E364, and E459 were introduced in the D6/2 mutant. In contrast, a similar mutation at the conserved H331 position did not show any effect on POEP activity. Individual alanine substitutions at the above conserved amino acids in wild-type p67 did not show any significant effect on POEP activity except the E459 position where alanine substitution caused approximately 50% increase in POEP activity as compared to the wild type. Although, the levels of endogenous p67 and p67-deglycosylase did not correlate with the POEP activity, we found that the D6/2 mutant of p67 was glycosylated at a higher level in mammalian cells as compared to wild-type p67. The increased POEP activity of the D6/2 mutant also correlated with the higher rate of overall protein synthesis in mammalian cells constitutively expressing this mutant form of p67. Taken together, these data suggest that the acidic residue-rich domain present at the N-terminus of p67 may have a negative role in POEP activity.  相似文献   

2.
Phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 is the major regulatory step in the initiation of protein synthesis in mammals. P67, a cellular glycoprotein, protects phosphorylation of eIF2alpha from kinases. P67 has five conserved amino acid residues at the D251, D262, H331, E364, and E459 positions. To determine the roles of these conserved amino acid residues in eIF2alpha phosphorylation during serum-starved conditions, we constitutively expressed D251A, D262A, H331A, E364A, and E459A mutants in rat tumor hepatoma cells. We find that the point mutants D251A, H331A, and E364A lower the levels of eIF2alpha phosphorylation. These low levels of phosphorylation decrease when serum-starved cells are grown in medium containing serum. To understand the mechanism of action of the p67 mutants in eIF2alpha phosphorylation during serum-starvation, we performed detailed biochemical analyses with the D251A mutant. We find that neither the O-GlcNAc modification on the D251A mutant nor the binding of D251A mutant with eIF2gamma has significant effects on eIF2alpha phosphorylation during serum-starved conditions. However, the D251A mutant inhibits p67's activity to suppress the activity of ERK1/2. Our data suggest that both p67 and the D251A mutant bind to ERK1, thus strengthening the idea that p67 regulates the activity of ERK1. During serum-starvation conditions, both PKR and PERK are phosphorylated and the D251A mutant shows increased stability of PERK as well as a slight decrease in its activity. Altogether, our data provide evidence to suggest that p67 modulates the expression and activity of certain eIF2alpha-specific kinases.  相似文献   

3.
Phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 is the major regulatory step in the initiation of protein synthesis in mammals. P67, a cellular glycoprotein, protects phosphorylation of eIF2alpha from kinases. Previously, we reported that the D6/2 mutant of p67 has higher levels of protection of eIF2alpha phosphorylation (POEP) activity. In this study, we report that the D6/2 mutant and its double mutants containing second-site alanine substitutions at the five conserved amino acid residues (D251, D262, H331, E364, and E459) show increased POEP activity in serum-starved rat tumor hepatoma cells. Serum-restoration to those cells did not abolish their increased POEP activity except the D6/2+H331A double mutant. The latter mutant shows slight inhibition of POEP activity during serum starvation and this inhibition increased significantly during serum restoration. KRC-7 cells constitutively expressing the D6/2 mutant showed slightly decreased levels of PKR phosphorylation and significantly low level of phosphorylation of ERKs 1 and 2. The D6/2 mutant also showed increased binding with eIF2alpha and eIF2gamma and almost similar binding with ERKs 1 and 2 as compared to wild type p67. Altogether, our data demonstrate that the increased binding of the D6/2 mutant with the subunits of eIF2 may be in part the cause for its high POEP activity.  相似文献   

4.
The rate of protein synthesis in mammals is largely regulated by phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2) that is modulated by the cellular glycoprotein, p67, due to its protection of eIF2alpha phosphorylation (POEP) activity. At the N-terminus of p67, there are three unique domains, and at the C-terminus there is a conserved amino acid sequence. To analyze the importance of these domains, C-terminal deletion mutants of rat p67 were expressed constitutively in KRC-7 cells. In these cells, the phosphorylation level of the alpha-subunit of eIF2 was determined, and it was found that expression of the 1-97 amino acid segment of rat p67 increases POEP activity in vivo, and induces the endogenous levels of p67. These cells also show increased growth rate, and efficient translation of chloramphenicol acetyltransferase and beta-galactosidase reporter genes. At the N-terminus of p67, there are two unique domains: a lysine-rich domain I with the sequence (36)KKKRRKKKK(44), and an acidic residue-rich domain with the sequence (77)EEKEKDDDDEDGDGD(91). Substitution of lysine-rich domain I with (36)NMKSGNKTQ(44) in rat recombinant p67 resulted in the inhibition of its POEP activity, and substitution of the acidic residue-rich domain with (77)QNIQKALEPEAGDGA(91), resulted in no inhibition of POEP activity in KRC-7 cells. Taken together, our data suggest that protection of translation initiation factor eIF2 phosphorylation correlates with eIF2-associated glycoprotein p67 levels and requires the lysine-rich domain I of p67.  相似文献   

5.
The heterotrimeric eukaryotic initiation factor 2 (eIF2) plays a critical role in the mechanics and regulation of protein synthesis. Unlike yeast and archaeal eIF2, the purified baculovirus-expressed recombinant human eIF2 subunits used in these studies reveal that the alpha- and beta-subunits interact with each other. Consistent with this observation, the beta-subunit specifically interacts with the purified eIF2B in ELISA studies and this interaction is enhanced when wt eIF2alpha in the recombinant trimeric complex is phosphorylated or replaced by a mutant phosphomimetic eIF2alpha (S51D). These findings together with other observations raise the possibility that the beta-subunit plays a key role in the regulation and function of mammalian eIF2 complex. PERK, an eIF2alpha kinase, is found to interact with wt and mutants of eIF2alpha in which the serine 51 or 48 residue is replaced by alanine or aspartic acid thereby suggesting that the phosphorylation site in the substrate is not important for interaction. Fluorescence spectroscopic and fluorescence resonance energy transfer analyses reveal that the energy transfer occurs from PERK to eIF2alpha. The dissociation constant of alpha-subunit-PERK complex (Kd alpha-subunit) is 0.74 microM and the interaction is stoichiometric.  相似文献   

6.
Eukaryotic initiation factor 2 (eIF2)-associated glycoprotein, p67, plays an important role in protecting eIF2alpha from phosphorylation by eIF2alpha-specific kinases. To understand the molecular details of interaction between p67 and the subunits of eIF2, we applied several biochemical and mutational analyses to identify interacting domains within p67 and eIF2gamma. These studies were combined with functional in vivo and in vitro assays to address the importance of the interactions between p67 and eIF2gamma in eIF2alpha phosphorylation. Studies from yeast two-hybrid assays show that p67 interacts strongly with eIF2gamma, relatively weakly with eIF2alpha, and no interaction with eIF2beta. Further mutational analyses provided evidence that the N-terminal lysine-rich domain II and the 340-430 amino acid segment of p67 interact strongly with the C-terminal 409-472 amino acid segment of eIF2gamma. GST pull-down assays show that the interaction between p67 and eIF2gamma is direct. From co-immunoprecipitation studies, we find that the interaction between p67 and eIF2gamma could not only be detected in mammalian cells growing in growth medium, it could also be detected in transiently transfected cells with expression plasmids encoding p67 and eIF2gamma. However, this interaction could not be detected in p67 mutants lacking lysine-rich domain II and the 340-430 amino acid segment. We also find a very good correlation between p67 binding to eIF2gamma and the protection of eIF2alpha from phosphorylation. Altogether, our data provide genetic evidence for the interaction between p67 and eIF2gamma and that this interaction modulates the phosphorylation of eIF2alpha.  相似文献   

7.
Datta B  Ghosh A  Majumdar A  Datta R 《Biochemistry》2007,46(11):3465-3475
Eukaryotic initiation factor 2-associated glycoprotein, p67, plays important roles in the regulation of eIF2alpha phosphorylation and thus maintains cell growth and proliferation. The p67 sequence can be divided into two segments, the N-terminal segment of amino acids 1-107 (p26) and the downstream segment of amino acids 108-480 (p52). Comparison of the amino acid sequences of p67 from lower to higher organisms suggests that there is a progressive addition of several unique domains at the N-terminus of p67, and these unique domains, which are present in p26, play important roles in the modulation of eIF2alpha phosphorylation in mammalian cells. To test the hypothesis that the p26 segment is generated from p67 due to its autoproteolysis and whether p26 is required for the protection of eIF2alpha from phosphorylation, we have analyzed the time-dependent cleavage of functionally active rat recombinant p67 purified from either baculovirus-infected insect cells or transiently transfected mammalian cells. We noticed a regulated cleavage of p67 that generates several peptides along with the most stable p26 and p52 fragments. The p52 fragment has a low level of autoproteolysis activity that possibly increases the autoproteolysis of full-length p67. This activity could not be inhibited by a serine protease inhibitor, PMSF, but could be inhibited by a cocktail of protease inhibitors that includes bestatin, leupeptin, E64, AEBSF, and aprotinin. To provide evidence that the fragmentation of p67 is not due to the presence of any contaminant protease(s), we fractionated purified rat p67 with molecular sieve, anion exchange, and cation exchange chromatographic steps performed in the presence of different K+ ion concentrations. Our data show that the extent of cleavage of p67 into different fragments is higher in the presence of 0.75 M K+ ion and in samples stored at -80 degrees C. Under parallel conditions, p67's mutants, D251A and D262A, exhibited very little to no cleavage, whereas the H231E mutant exhibited extensive cleavage that generated a large amount of p26 fragment. The p26 fragment exhibited protection of eIF2alpha phosphorylation both in vivo and in vitro. Altogether, our data provide evidence that rat p67 has autoproteolytic activity that generates p26, which is required to block eIF2alpha from phosphorylation.  相似文献   

8.
The alpha subunit of translation initiation factor 2 (eIF2alpha) is the target of specific kinases that can phosphorylate a conserved serine residue as part of a mechanism for regulating protein expression at the translational level in eukaryotes. The structure of the 20 kDa N-terminal region of eIF2alpha from Saccharomyces cerevisiae was determined by X-ray crystallography at 2.5A resolution. In most respects, the structure is similar to that of the recently solved human eIF2alpha; the rather elongated protein contains a five-stranded antiparallel beta-barrel in its N-terminal region, followed by an almost entirely helical domain. The S.cerevisiae eIF2alpha lacks a disulfide bridge that is present in the homologous protein in humans and some of the other higher eukaryotes. Interestingly, a conserved loop consisting of residues 51-65 and containing serine 51, the putative phosphorylation site, is visible in the electron density maps of the S.cerevisiae eIF2alpha; most of this functionally important loop was not observed in the crystal structure of the human protein. This loop is relatively exposed to solvent, and contains two short 3(10) helices in addition to some extended structure. Serine 51 is located at the C-terminal end of one of the 3(10) helices and near several conserved positively charged residues. The side-chain of serine 51 is sufficiently exposed so that its phosphorylation would not necessitate a substantial change in the protein structure. The structures and relative positions of residues that have been implicated in kinase binding and in the interaction with guanine nucleotide exchange factor (eIF2B) are described.  相似文献   

9.
Phosphorylation of serine 51 residue on the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha) inhibits the guanine nucleotide exchange (GNE) activity of eIF2B, presumably, by forming a tight complex with eIF2B. Inhibition of the GNE activity of eIF2B leads to impairment in eIF2 recycling and protein synthesis. We have partially purified the wild-type (wt) and mutants of eIF2alpha in which the serine 51 residue was replaced with alanine (51A mutant) or aspartic acid (51D mutant) in the baculovirus system. Analysis of these mutants has provided novel insight into the role of 51 serine in the interaction between eIF2 and eIF2B. Neither mutant was phosphorylated in vitro. Both mutants decreased eIF2alpha phosphorylation occurring in hemin and poly(IC)-treated reticulocyte lysates due to the activation of double-stranded RNA-dependent protein kinase (PKR). However, addition of 51D, but not 51A mutant eIF2alpha protein promoted inhibition of the GNE activity of eIF2B in hemin-supplemented rabbit reticulocyte lysates in which relatively little or no endogenous eIF2alpha phosphorylation occurred. The 51D mutant enhanced the inhibition in GNE activity of eIF2B that occurred in hemin and poly(IC)-treated reticulocyte lysates where PKR is active. Our results show that the increased interaction between eIF2 and eIF2B protein, occurring in reticulocyte lysates due to increased eIF2alpha phosphorylation, is decreased significantly by the addition of mutant 51A protein but not 51D. Consistent with the idea that mutant 51D protein behaves like a phosphorylated eIF2alpha, addition of this partially purified recombinant subunit, but not 51A or wt eIF2alpha, increases the interaction between eIF2 and 2B proteins in actively translating hemin-supplemented lysates. These findings support the idea that phosphorylation of the serine 51 residue in eIF2alpha promotes complex formation between eIF2alpha(P) and eIF2B and thereby inhibits the GNE activity of eIF2B.  相似文献   

10.
11.
dsRNA-binding domains (dsRBDs) characterize an expanding family of proteins involved in different cellular processes, ranging from RNA editing and processing to translational control. Here we present evidence that Ebp1, a cell growth regulating protein that is part of ribonucleoprotein (RNP) complexes, contains a dsRBD and that this domain mediates its interaction with dsRNA. Deletion of Ebp1's dsRBD impairs its localization to the nucleolus and its ability to form RNP complexes. We show that in the cytoplasm, Ebp1 is associated with mature ribosomes and that it is able to inhibit the phosphorylation of serine 51 in the eukaryotic initiation factor 2 alpha (eIF2alpha). In response to various cellular stress, eIF2alpha is phosphorylated by distinct protein kinases (PKR, PERK, GCN2, and HRI), and this event results in protein translation shut-down. Ebp1 overexpression in HeLa cells is able to protect eIF2alpha from phosphorylation at steady state and also in response to various treatments. We demonstrate that Ebp1 interacts with and is phosphorylated by the PKR protein kinase. Our results demonstrate that Ebp1 is a new dsRNA-binding protein that acts as a cellular inhibitor of eIF2alpha phosphorylation suggesting that it could be involved in protein translation control.  相似文献   

12.
Phosphorylation of the serine 51 residue in the alpha-subunit of translational initiation factor 2 in eukaryotes (eIF2 alpha) impairs protein synthesis presumably by sequestering eIF2B, a rate-limiting pentameric guanine nucleotide exchange protein which catalyzes the exchange of GTP for GDP in the eIF2-GDP binary complex. To further understand the importance of eIF2 alpha phosphorylation in the interaction between eIF2 alpha(P) and eIF2B proteins and thereby the regulation of eIF2B activity, we expressed the wild type (wt) and a mutant eIF2 alpha in which the serine 48 residue was replaced with alanine (48A mutant) in the baculovirus system. The findings reveal that the expression of both of these recombinant subunits was very efficient (15-20% of the total protein) and both proteins were recognized by an eIF2 alpha monoclonal antibody and were phosphorylated to the same extent by reticulocyte eIF2 alpha kinases. However, partially purified recombinant subunits (wt or 48A mutant) were not phosphorylated as efficiently as the eIF2 alpha subunit present in the purified reticulocyte trimeric eIF2 complex and were also found to inhibit the phosphorylation of eIF2 alpha of the trimeric complex. Furthermore, the extents of inhibition of eIF2B activity and formation of the eIF2 alpha(P)-eIF2B complex that occurs due to eIF2 alpha phosphorylation in poly(IC)-treated rabbit reticulocyte lysates were decreased significantly in the presence of insect cell extracts expressing the 48A mutant eIF2 alpha compared to those for wt. These findings support the hypothesis that the serine 48 residue is required for high-affinity interaction between eIF2 alpha(P) and eIF2B.  相似文献   

13.
Phosphorylation of the translation initiation factor eIF2 on Ser51 of its alpha subunit is a key event for regulation of protein synthesis in all eukaryotes. M156R, the product of the myxoma virus M156R open reading frame, has sequence similarity to eIF2alpha as well as to a family of viral proteins that bind to the interferon-induced protein kinase PKR and inhibit phosphorylation of eIF2alpha. In this study, we demonstrate that, like eIF2alpha. M156R is an efficient substrate for phosphorylation by PKR and can compete with eIF2alpha. To gain insights into the substrate specificity of the eIF2alpha kinases, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel beta-barrel with two of the strands connected by a loop and an alpha-helix. The similarity between M156R and the beta-barrel structure in the N terminus of eIF2alpha suggests that the viral homologs mimic eIF2alpha structure in order to compete for binding to PKR. A homology-modeled structure of the well-studied vaccinia virus K3L was generated on the basis of alignment with M156R. Comparison of the structures of the K3L model, M156R, and human eIF2alpha indicated that residues important for binding to PKR are located at conserved positions on the surface of the beta-barrel and in the mobile loop, identifying the putative PKR recognition motif.  相似文献   

14.
15.
The eIF2alpha kinases have been involved in the inhibition of vesicular virus replication but the contribution of each kinase to this process has not been fully investigated. Using mouse embryonic fibroblasts (MEFs) from knock-out mice we show that PKR and HRI have no effects on VSV replication as opposed to PERK and GCN2, which exhibit strong inhibitory effects. When MEFs containing the serine 51 to alanine mutation of eIF2alpha were used, we found that VSV replication is independent of eIF2alpha phosphorylation. Nevertheless, the kinase domain of the eIF2alpha kinases is both necessary and sufficient to inhibit VSV replication in cultured cells. Induction of PI3K-Akt/PKB pathway by eIF2alpha kinase activation plays no role in the inhibition of VSV replication. Our data provide strong evidence that VSV replication is not affected by eIF2alpha phosphorylation or downstream effector pathways such as the PI3K-Akt/PKB pathway. Thus, the anti-viral properties of eIF2alpha kinases are not always related to their inhibitory effects on host protein synthesis as previously thought and are possibly mediated by phosphorylation of proteins other than eIF2alpha.  相似文献   

16.
17.
The perception of environmental stress in animal cells engineered to produce heterologous protein leads to the induction of stress signaling pathways and ultimately apoptosis and cell death. Protein synthesis is regulated in response to various environmental stresses by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2). In this study we have utilized a model system of Chinese hamster ovary cells engineered to secrete recombinant TIMP-1 protein to investigate the relationship between the cellular rate of protein synthesis, eIF2alpha phosphorylation, cellular stress perception, and the rate of cell specific recombinant protein synthesis. The rate of total protein synthesis was maximal after 48 hours of culture, remaining relatively high until 96 hours of culture, after which a decline was observed. Towards the end of culture a marked increase in labeled secreted protein was observed. Total eIF2alpha expression levels were high during the exponential growth phase and decreased slightly towards the end of culture. On the other hand, the relative expression of phosphorylated eIF2alpha showed a bi-phasic response with a small increase in phosphorylated eIF2alpha observed at 48 hours of culture, and a significant increase at 120 hours post-inoculation. The large increase in phosphorylated eIF2alpha coincided with the observed increase in labeled secreted protein and the decline in total cellular protein synthesis. A marked increase in ubiquitination was also observed at 120 hours post-inoculation that coincided with reduced rates of cellular protein synthesis and mRNA translation attenuation. We suggest that eIF2alpha phosphorylation is an indicator of cellular stress perception, which could be exploited in recombinant protein manufacturing to commence feeding and engineering strategies.  相似文献   

18.
Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.  相似文献   

19.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

20.
Eukaryotic initiation factor 2 (eIF2) is a GDP-binding protein with three subunits: alpha, beta, and gamma. It delivers initiator tRNA (Met-tRNAi) to 40S ribosomes in a GTP-dependent manner. The factor regulates the translation of messenger RNAs through the phosphorylation of serine 51 residue in the small or alpha-subunit of eIF2 (eIF2alpha) and modulation of its interaction with a rate-limiting heteropentameric protein eIF2B. To understand the structural, functional, and regulatory roles of each of these subunits in the various activities of phosphorylated and unphosphorylated eIF2, such, as its ability to interact with GTP, Met-tRNAi, 40S ribosomes and with various proteins, we have for the first time over expressed all the three subunits of human eIF2 independently, and, also together in Sf9 cells using pFast Bac HT vector of baculovirus expression system. The expression of all subunits increased with increase in infection time up to 72 h. We have also over expressed three mutant forms of eIF2alpha viz, S51A, S51D, and S48A in which the serine at 51 or 48 position is replaced by an alanine or aspartic acid with 6x histidine tag at the N-terminus. Further, any of the two subunits or all the three subunits of eIF2 were coexpressed by multiple infection of cells with recombinant viruses. Purified alpha (wt and mutants) and beta subunits were found suitable to serve as substrates for different kinases. The recombinant subunits of eIF2alpha and beta-subunits were also phosphorylated in cultured insect cells. Phosphorylation of eIF2alpha in vitro was not significantly different in the presence and absence of the other subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号