首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物MYB类转录因子研究进展   总被引:23,自引:0,他引:23  
植物MYB转录因子以含有保守的MYB结构域为共同特征,广泛参与植物发育和代谢的调节。含单一MYB结构域的MYB转录因子在维持染色体结构和转录调节上发挥着重要作用,是MYB转录因子家族中较为特殊的一类。含两个MYB结构域的MYB转录因子成员众多,在植物体内主要参与次一代谢的调节和控制细胞的形态发生。含3个MYB结构域的MYB蛋白与c-MYB蛋白高度同源,可能在调节细胞周期中起作用。  相似文献   

2.
The R2R3-MYB gene family in Arabidopsis thaliana   总被引:25,自引:0,他引:25  
MYB factors represent a family of proteins that include the conserved MYB DNA-binding domain. In contrast to animals, plants contain a MYB-protein subfamily that is characterised by the R2R3-type MYB domain. 'Classical' MYB factors, which are related to c-Myb, seem to be involved in the control of the cell cycle in animals, plants and other higher eukaryotes. Systematic screens for knockout mutations in MYB genes, followed by phenotypic analyses and the dissection of mutants with interesting phenotypes, have started to unravel the functions of the 125 R2R3-MYB genes in Arabidopsis thaliana. R2R3-type MYB genes control many aspects of plant secondary metabolism, as well as the identity and fate of plant cells.  相似文献   

3.
Since the identification of the first plant MYB-like protein, the Zea mays factor C1, the number of MYB-related genes described has greatly increased. All of the more than 150 plant MYB-like proteins known so far contain either two or only one sequence-related helix-turn-helix motif in their DNA-binding domain. Animal c-MYB genes contain three such helix-turn-helix motif-encoding repeats (R1R2R3 class genes). It has therefore been concluded that R2R3-MYB genes are the plant equivalents of c-MYB and that there are significant differences in the basic structure of MYB genes of plants and animals. Here, we describe expressed R1R2R3-MYB genes from Physcomitrella patients++ and Arabidopsis thaliana, designated PpMYB3R-1 and AtMYB3R-1. The amino acid sequences of their DNA-binding domains show high similarity to those of animal MYB factors, and less similarity to R2R3-MYB proteins from plants. In addition, R1R2R3-MYB genes were identified in different plant evolutionary lineages including mosses, ferns and monocots. Our data show that a DNA-binding domain consisting of three MYB repeats existed before the divergence of the animal and plant lineages. R1R2R3-MYB genes may have a conserved function in eukaryotes, and R2R3-MYB genes may predominantly regulate plant-specific processes which evolved during plant speciation.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
In animals, the protooncogene myb family is characterized by a DNA-binding domain (so-called MYB domain), which consists of 3 imperfect tandem repeats of a helix-turn-helix motif. Homologous genes have been characterized in plants and also in Dictyostelium discoideum. However, in plants, the myb family is more diverse and displays 2 types of MYB domains: the animal-like 3 repeats (MYB-3R) and the 2 repeats (MYB-2R) domains. The question is therefore raised as to the putative existence of genes with MYB-3R and/or MYB-2R domains in their last common unicellular ancestor. Here, we present evidence that in ciliates like in plants, both types of domain exist. A gene having a MYB-3R domain has been identified in the oxytrichid Sterkiella histriomuscorum and a gene having a MYB-2R domain has been identified in the euplotid Euplotes aediculatus. Both genes are expressed during the vegetative growth of the cells. A conserved intron exists in the gene of Sterkiella and phylogenetical analyses show that the 2 ciliate genes belong to the myb protooncogene family as deeply split lineages. This is the first report of a myb homolog in a ciliated protist, thus, confirming its origin in strict unicellular eukaryotes.  相似文献   

14.
MYB转录因子家族是植物中数量最多的转录因子家族之一,在植物次生代谢调节、信号转导和抗逆等生物过程起重要作用。根据MYB转录因子结构域组成差异可分4个亚家族:即1R-MYB(MYB-relaed)、R2R3-MYB、3R-MYB和4R-MYB。其中,R2R3-MYB亚家族数量最多,可进一步分为22个亚组;利用生物信息学分析杨树MYB转录因子蛋白序列的保守结构域、系统发生、基因组定位、氨基酸组成和理化性质等;参照拟南芥MYB转录因子功能,预测杨树MYB转录因子功能;基于84K杨转录组测序和RT-qPCR分析,从301个杨树MYB转录因子基因中筛选出69个应答盐胁迫基因(P≤0.05)。其中,上调表达基因32个,下调表达基因37个。该研究可为进一步研究杨树MYB家族基因功能提供参考依据。  相似文献   

15.
16.
MYB转录因子是植物中重要的基因家族之一,参与多种生物学功能的调控.目前对花生(Arachis hypogaea)MYB转录因子家族的功能仍知之甚少,对花生中MYB转录因子的鉴定及生物信息学分析具有重要的意义.本研究在栽培花生中共鉴定出MYB转录因子443个,包括219个1R-MYB、209个2R-MYB、12个3R-...  相似文献   

17.
Telomere-binding proteins have recently been recognised not only as necessary building blocks of telomere structure, but namely as components which are of central importance to telomere metabolism being involved in regulation of telomere length as well as in protective (capping) function of telomeres. Although the knowledge on plant telomeric DNA-binding proteins lags behind that in human and yeast, recent data show both analogies and plant-specific features in the composition and interactions of telomeric proteins. This review focuses primarily on proteins with known amino acid sequence. These can be classified into following groups: 1) the family of proteins with Myb domain at C-terminus, 2) proteins with Myb domain at N-terminus, both binding double-stranded DNA of telomeric repeats TTTAGGG, 3) the single-stranded DNA-binding proteins, and 4) other proteins that act also in non-telomeric chromatin regions. Proteins with C-terminal Myb domain reported as IBP family were previously found in human, whereas Smh family representing proteins with Myb domain at N-terminus was identified only in plants. Also RRM family of the single-stranded DNA-binding proteins is likely to be plant specific.  相似文献   

18.
19.
The R2R3-MYB transcription factor gene family in maize   总被引:2,自引:0,他引:2  
Du H  Feng BR  Yang SS  Huang YB  Tang YX 《PloS one》2012,7(6):e37463
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号