共查询到20条相似文献,搜索用时 15 毫秒
1.
Weekly measurements during the open season at five stations on a small Ontario stream system showed that the size distribution of fine particles in the water varied irregularly. In general, rainfall increased their total amount and also the concentration of dissolved organic carbon. Clearly other local factors affect the supply of particles, and each reach behaves individually and may react differently to successive storms. The behaviour of dissolved material is more predictable, and it is clear that much is rapidly removed from solution. It was shown that high concentrations of particles are associated with high amounts of plant pigments, carbohydrate, and protein. Similarly dissolved carbohydrate and protein are raised when rain increases dissolved organic carbon. These findings suggest a series of mechanisms by which a woodland stream may trap woodland produced energy and cycle it through the aquatic system.This work was supported by a research grant from the National Research Council of Canada to H. B. N. Hynes. 相似文献
2.
3.
Seasonal response of stream biofilm communities to dissolved organic matter and nutrient enrichments
Dissolved organic matter (DOM) and inorganic nutrients may affect microbial communities in streams, but little is known about the impact of these factors on specific taxa within bacterial assemblages in biofilms. In this study, nutrient diffusing artificial substrates were used to examine bacterial responses to DOM (i.e., glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate and phosphate singly and in combination). Artificial substrates were deployed for five seasons, from summer 2002 to summer 2003, in a northeastern Ohio stream. Differences were observed in the responses of bacterial taxa examined to various DOM and inorganic nutrient treatments, and the response patterns varied seasonally, indicating that resources that limit the bacterial communities change over time. Overall, the greatest responses were to labile, low-molecular-weight DOM (i.e., glucose) at times when chlorophyll a concentrations were low due to scouring during significant storm events. Different types of DOM and inorganic nutrients induced various responses among bacterial taxa in the biofilms examined, and these responses would not have been apparent if they were examined at the community level or if seasonal changes were not taken into account. 相似文献
4.
Immobilization of dissolved organic matter from groundwater discharging through the stream bed 总被引:5,自引:0,他引:5
SUMMARY. 1. In laboratory experiments, 9.7–25.7% of dissolved organic carbon (DOC) in groundwater (at concentrations of 18.7–24.8 mg 1-−1 ) was immobilized after perfusion through 8-cm-deep (22-cm-diameter) cores of stony stream-bed substratum.
2. This represented immobilization rates of 7.1–23.5 mg m−2 h−1 or, extrapolated across the year, potential immobilization rates within the stream bed of 62.2–205.9g m−2 yr−1 . Actual rates in the entire stream bed were probably higher because perfusion through the experimental cores did not reduce groundwater DOC concentrations to levels measured in the adjacent stream.
3. Natural concentrations of dissolved free amino acids (DFAAs) in groundwater were generally unchanged following perfusion through the cores, suggesting the maintenance of a dynamic equilibrium in their concentrations.
4. Selective enrichments of amino acids in groundwater (up to 20-fold) were entirely immobilized following perfusion, indicating their rapid retention and flux in this environment. Thus, immobilization of the bulk DOC in stream-bed cores probably did not reflect net reductions in dissolved free, low-molecular-weight material, with higher molecular weight, more 'refractory' material being immobilized instead.
5. We conclude that groundwater can contribute substantial amounts of DOC, both high and low molecular weight, to a stream ecosystem. The stream bed is the site at which much of this material could be initially immobilized and made available to the stream trophic structure. 相似文献
2. This represented immobilization rates of 7.1–23.5 mg m
3. Natural concentrations of dissolved free amino acids (DFAAs) in groundwater were generally unchanged following perfusion through the cores, suggesting the maintenance of a dynamic equilibrium in their concentrations.
4. Selective enrichments of amino acids in groundwater (up to 20-fold) were entirely immobilized following perfusion, indicating their rapid retention and flux in this environment. Thus, immobilization of the bulk DOC in stream-bed cores probably did not reflect net reductions in dissolved free, low-molecular-weight material, with higher molecular weight, more 'refractory' material being immobilized instead.
5. We conclude that groundwater can contribute substantial amounts of DOC, both high and low molecular weight, to a stream ecosystem. The stream bed is the site at which much of this material could be initially immobilized and made available to the stream trophic structure. 相似文献
5.
A stormflow/baseflow comparison of dissolved organic matter concentrations and bioavailability in an Appalachian stream 总被引:2,自引:4,他引:2
Patterns of dissolved organic carbon (DOC) and nitrogen (DON) delivery were compared between times of stormflow and baseflow in Paine Run, an Appalachian stream draining a 12.4 km2 forested catchment in the Shenandoah National Park (SNP), Virginia. The potential in-stream ecological impact of altered concentrations and/or chemical composition of DOM during storms also was examined, using standardized bacterial bioassays. DOC and DON concentrations in Paine Run were consistently low during baseflow and did not show a seasonal pattern. During storms however, mean DOC and DON concentrations approximately doubled, with maximum concentrations occurring on the rising limb of storm hydrographs. The rapid response of DOM concentration to changes in flow suggests a near-stream or in-stream source of DOM during storms. Stormflow (4% of the time, 36% of the annual discharge) contributed >50% of DOC, DON and NO3
– flux in Paine Run during 1997. In laboratory bacterial bioassays, growth rate constants were higher on Paine Run stormflow water than on baseflow water, but the fraction of total DOM which was bioavailable was not significantly different. The fraction of the total stream DOC pool taken up by water column bacteria was estimated to increase from 0.03 ± 0.02% h–1 during baseflow, to 0.15 ± 0.04% h–1 during storms. This uptake rate would have a minimal effect on bulk DOM concentrations in Paine Run, but storms may still have considerable impact on the bacterial stream communities by mobilizing them into the water column and by supplying a pulse of DOM. 相似文献
6.
The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream 总被引:4,自引:0,他引:4
1. Although dissolved nutrients and the quality of particulate organic matter (POM) influence microbial processes in aquatic systems, these factors have rarely been considered simultaneously. We manipulated dissolved nutrient concentrations and POM type in three contiguous reaches (reference, nitrogen, nitrogen + phosphorus) of a low nutrient, third‐order stream at Hubbard Brook Experimental Forest (U.S.A). In each reach we placed species of leaves (mean C : N of 68 and C : P of 2284) and wood (mean C : N of 721 and C : P of 60 654) that differed in elemental composition. We measured the respiration and biomass of microbes associated with this POM before and after nutrient addition. 2. Before nutrient addition, microbial respiration rates and biomass were higher for leaves than for wood. Respiration rates of microbes associated with wood showed a larger response to increased dissolved nutrient concentrations than respiration rates of microbes associated with leaves, suggesting that the response of microbes to increased dissolved nutrients was influenced by the quality of their substrate. 3. Overall, dissolved nutrients had strong positive effects on microbial respiration and fungal, but not bacterial, biomass, indicating that microbial respiration and fungi were nutrient limited. The concentration of nitrate in the enriched reaches was within the range of natural variation in forest streams, suggesting that natural variation in nitrate among forest streams influences carbon mineralisation and fungal biomass. 相似文献
7.
Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes 总被引:1,自引:0,他引:1
Dissolved organic matter (DOM) is an important vehicle for the movement of nutrients from terrestrial to aquatic systems. To investigate how the source and composition of aquatic DOM change in both space and time, we used chemical, spectroscopic, and isotopic analyses to characterize DOM in a headwater catchment in the Colorado Front Range. Streamwater samples for DOM analyses were collected from 2 sites, a lightly vegetated alpine site and a forested, subalpine site, in the North Boulder Creek catchment during the snowmelt runoff season (May–September). Concentrations of dissolved organic carbon (DOC) peaked on the ascending limb of the snowmelt hydrograph at both the alpine (2.6 mg C l−1) and the subalpine sites (7.0 mg C l−1) and decreased sharply on the descending limb of the hydrograph. Fractionation of DOM into operationally defined humic and non-humic components showed that the fulvic acid content of DOC decreased through the season at both sites and that spectroscopic (fluorescence and ultraviolet) properties of the humic DOM fraction shifted in a manner consistent with an increase in the proportion of humic DOM derived from instream sources as compared to terrestrial catchment sources. Humic and non-humic fractions of DOM isolated near peak flow in June and during low flows in September showed a seasonal enrichment in 15N and 13C as well as a seasonal decrease in the ratio of aromatic to aliphatic carbon, both of which were correlated with a decrease in the C:N ratio of the DOM fractions. These results suggest that seasonal shifts in the isotopic and chemical characteristics of DOM are a result of changes in catchment sources of DOM. In particular, it appears that DOM production in alpine lakes is an important contributor to the streamwater DOM load during late season low flows, especially in the alpine reach of the catchment. Our results further suggest that stable isotopes of C and N are useful tools, particularly when combined with ancillary data such as elemental analyses and catchment discharge, for evaluating sources and transformations of DOM at the catchment scale. 相似文献
8.
Evidence for the use of non-detrital dissolved organic matter by microheterotrophs on plant detritus in a woodland stream 总被引:2,自引:0,他引:2
J. CLARK MILLER 《Freshwater Biology》1987,18(3):483-494
SUMMARY 1. Recent studies provide evidence for the use of exudates from living plants by epilithic microheterotrophs in streams. This study investigated the possible use of such non-detrital sources of dissolved organic matter (DOM) by streatn microheterotrophs colonizing leaf litter. Biomass of bacteria and of fungi accumulating in situ on autumn-shed leaves in flow-through troughs from which light was excluded was compared to that accumulating on leaves in troughs open to natural illumination.
2. In experiments repeated at different times of year and in different stream sections, greater biomass of microheterotrophs consistently accumulated on the leaf detritus in troughs open to natural illumination. Differences in water temperature or in grazing of leaf surfaces by macroinvertebrates could not account for these consistent differences. Further, greater microheterotroph biomass accumulated on light- and dark-incubated leaves in a stream section relatively open to sunlight, compared to corresponding leaves in a section heavily shaded by canopy and understorey vegetation.
3. These and other results suggest that, to some yet undetermined extent, detritus-associated microheterotrophs use non-detrital DOM. This conclusion is consistent with a priori predictions based on consideration of microbial energetics involved in the use of detrital versus non-detrital DOM.
4. Studies of trophic pathways in streams and other aquatic habitats have failed to assess some potentially important sources of non-detrital DOM. The ability of available techniques to assess the relative roles of detrital and non-detrital sources of DOM is evaluated, and alternative approaches to this problem are suggested. 相似文献
2. In experiments repeated at different times of year and in different stream sections, greater biomass of microheterotrophs consistently accumulated on the leaf detritus in troughs open to natural illumination. Differences in water temperature or in grazing of leaf surfaces by macroinvertebrates could not account for these consistent differences. Further, greater microheterotroph biomass accumulated on light- and dark-incubated leaves in a stream section relatively open to sunlight, compared to corresponding leaves in a section heavily shaded by canopy and understorey vegetation.
3. These and other results suggest that, to some yet undetermined extent, detritus-associated microheterotrophs use non-detrital DOM. This conclusion is consistent with a priori predictions based on consideration of microbial energetics involved in the use of detrital versus non-detrital DOM.
4. Studies of trophic pathways in streams and other aquatic habitats have failed to assess some potentially important sources of non-detrital DOM. The ability of available techniques to assess the relative roles of detrital and non-detrital sources of DOM is evaluated, and alternative approaches to this problem are suggested. 相似文献
9.
10.
William H.M Dowell 《Biogeochemistry》1985,1(4):329-352
Freeze-dried aqueous extracts of autumn-shed maple leaves, birch leaves, and spruce needles were added to a third-order reach of Bear Brook, New Hampshire at concentrations similar to those predicted to occur during peak leaf fall. Leachate from each species was rapidly removed from solution. With initial concentrations of added leachate of approximately 5 mgl–1, dissolved organics (DOC) uptake ranged from 73 to 130 mg m–2 h–1 for the first five hours of travel downstream from the point of addition. There was no preferential removal of DOC of low molecular weight, or of monomeric carbohydrates relative to phenolics or unidentified DOC.Stream sediments and organic debris rapidly removed DOC from solution in laboratory experiments. No significant flocculation or microbial assimilation of sugar maple leachate occurred in stream water alone. Stream sediments showed small increases in respiration with addition of leaf leachate, but no increase in respiration occurred upon addition of leachate to organic debris. Abiotic adsorption due to the high concentrations of exchangeable iron and aluminium in stream sediments may be responsible for much of the rapid removal of leaf leachate observed in field experiments. Abiotic processes appear to retain DOC within the stream, thereby allowing subsequent metabolism of dissolved organic carbon by stream microflora. 相似文献
11.
This study investigated the properties and sorption by goethite of bulk (unfractionated) dissolved organic matter (DOM) from surface and shallow groundwaters at McDonalds Branch, a small freshwater fen in the New Jersey Pine Barrens (USA). Water samples were collected in the spring and fall seasons from two surface-water sampling sites, an upstream potential recharge area and a downstream discharge area, as well as from a set of in-stream nested wells in the upstream potential recharge area. Changes in DOM concentration, molecular weight distribution, and molar absorptivity at 280 nm were measured. Surface and shallow (1.6 m below land surface) groundwater samples collected in spring 1997 in the potential recharge zone (actual recharge impeded by an extensive clay lens) were found to be very similar in terms of DOM concentrations and physicochemical properties and is believe to originate from a common source. Samples taken in fall 1997 yielded no surface water because of drought conditions, and the shallow groundwater DOM collected from the recharge well contained significantly less and chemically altered DOM. This change in chemical properties is believed to be caused in part by fractionation resulting from sorption to mineral phases. Batch isotherm experiments show that sorption by goethite of the DOM from both spring surface and shallow groundwaters in the potential recharge area were similar, whereas the fall groundwater possessed a much lower affinity for the sorbent. This study demonstrated that shallow groundwaters collected under different climatic and hydrologic conditions (spring, high flow versus fall, drought conditions) resulted in different physicochemical properties and adsorption affinities. 相似文献
12.
Planktonic heterotrophic bacteria in lakes utilize the labile fraction of dissolved organic carbon (DOC), although information
about seasonal changes in labile DOC in hypertrophic lakes in terms of absolute amount and relative proportion of the total
DOC is still limited. We conducted DOC decomposition experiments using GF/F filtrates in water samples from hypertrophic Furuike
Pond, together with monitoring of DOC concentration and bacterial abundance in water samples from the pond, to examine seasonal
changes in the amount of labile DOC and growth of bacteria on labile DOC. DOC concentrations fluctuated between 2.7 and 11
mg C l−1, and bacterial abundance fluctuated between 1.5 × 106 and 1.0 × 108 cells ml−1. In the DOC decomposition experiment when grazers of bacteria were removed, small portions of DOC (18% ± 12%) were labile
for decomposition by bacteria, and the growth yield of bacteria on labile DOC ranged between 3.3% and 19%. Furthermore, addition
of nitrogen to water samples enhanced bacterial growth. Thus, not only labile DOC but also nitrogen limited bacterial growth
in the pond. Considering the results in the present study together with those of previous studies, bacterial abundance in
Furuike Pond is subjected to bottom-up control, such as by limitation of DOC and nitrogen throughout the year, although top-down
control of bacterial abundance such as by grazing is seasonally important.
Received: May 1, 2001 / Accepted: July 22, 2001 相似文献
13.
14.
The annual temperature regime of a small stream in New Zealand 总被引:1,自引:1,他引:1
C. L. Hopkins 《Hydrobiologia》1971,37(3-4):397-408
Summary An electrically operated strip-chart recorder was installed in the Hinau Stream, a small hill stream in the North Island of New Zealand. With this instrument the temperatures of the stream, air, and a small spring were monitored for 2 years. Mercury-in-glass maximum/minimum thermometers were installed at two other points in the stream system, one 500 m below the site sampled by the recorder probes and the other in another stream which joined the first.The annual temperature in the stream at the site of the continuous recorder ranged from 6°C to 18.5°C. Annual range in the spring water was much less, 10–14°C. The greatest daily range in temperature in both air and water was found during summer and the smallest in winter. Data taken 500 m down stream of the continuously recorded site showed that summer maxima were 3–4° higher than in the upper reaches, though the minima were about the same at the two sites. During winter there was little difference between the two sites. Data from certain other waters with wider annual temperature ranges showed summer maxima to be higher than in the Hinau, but winter minima to be about the same.Maximum temperature in the Hutt River where it flowed through thickly forested country was much less than in the same river in cleared land down stream and also much less than in two other rivers in open country for which data exist.Comparison of quantitative samples of benthic invertebrates taken from different parts of the Hinau Stream showed that several species of Trichoptera were more abundant in the recorder-monitored headwater than elsewhere in the stream. This may have been partly due to the less extreme temperature conditions in the headwater.
Résumé Un enregistreur électrique sur bande de papier a été installé dans Hinau Stream, un petit ruisseau qui coule dans des collines dans l'Ile du Nord de la Nouvelle Zélande. Les températures du ruisseau, de l'air, et d'une petite source furent enregistrées par cet appareil pendant une période couvrant deux années. Des thermomèters maximum/minimum à mercure furent placés en deux autres points du système hydrologique du ruisseau, l'un à 500 m en aval du site où opérait la sonde de l'enregistreur et l'autre dans un autre ruisseau qui rejoignait le premier.La température annuelle dans le ruisseau à l'emplacement de l'enregistreur permanent variait entre 6°C et 18.5°C. Les variations annuelles de l'eau de la source étaient biens moindres, 10–14°C. La plus importante variation journalière de température de l'air et de l'eau se produisait pendant l'été et la plus faible pendant l'hiver. Des mesures faites 500 m en aval du site où l'enregistrement était permanent montrèrent que les maxima pendant l'été étaient de 3 à 4° plus grands que dans l'amont, bien que les minima soient approximativement les mêmes dans les deux sites. Pendant l'hiver il y avait peu de différence entre les deux sites. Des mesures faites dans certains autres cours d'eau avec des plages de variation de températures annuelles beaucoup plus larges montrèrent que leurs maxima de l'été étaient plus grands que dans l'Hinau mais que leurs minima pendant l'hiver étaient à peu près les mêmes. La température maximum dans la Hutt River quand elle coulait à travers une région couverte de forêts épaisses était bien moindre que lorsque cette même rivière passait dans une région déboisée en aval, et elle était aussi bien moindre que dans deux autres cours d'eau coulant en pays non boisé pour lesquels il existe des mesures.Des comparaisons entre des échantillons quantitatifs d'invertébrés benthiques pris dans différentes parties d'Hinau Stream montrèrent que plusieurs espèces de Trichoptera étaient plus abondantes dans le cours supérieur du ruisseau où se trouvait l'enregistreur qu'autre part dans le ruisseau. Ceci est peut-être dû à des conditions de températures moins extrêmes dans la partie supérieure du ruisseau.相似文献
15.
16.
Inputs and transformation of allochthonous particulate organic matter in a headwater stream 总被引:2,自引:0,他引:2
Inputs and outputs of allochthonous particulate organic matter were measured during 15 months in the upper part of a beech forest headwater stream. Inputs were estimated to 716 g m−2 yr−1 , and leaves made up 71%. Outputs were estimated to 535 g m−2 yr−1 and consisted mainly of FPOM (92%). Therefore, a significant transformation of CPOM into FPOM took place. The mean FPOM concentration varied between 0.6 and 3.4 mg 1−1 , but the daily variations greatly surpassed the seasonal variations. As discharge was rather constant, the observed variations were due to external disturbances, especially precipitation.
A tentative scheme for leaf processing is established from the present data and previous studies in the area, indicating that a significant part takes place in the MPOM pool and that microbial and invertebrate processing make up about 50% each of total intra-system processing. 相似文献
A tentative scheme for leaf processing is established from the present data and previous studies in the area, indicating that a significant part takes place in the MPOM pool and that microbial and invertebrate processing make up about 50% each of total intra-system processing. 相似文献
17.
1. We hypothesized that changes in bacterial colony growth would be correlated to shifts in riparian vegetation (via leachate quality) along a river continuum of a south-eastern, blackwater stream (U.S.A.). Spatially, we expected bacterial assemblages from downstream reaches to utilize more sources of leachate and at higher concentrations than bacteria collected from headwater reaches. Temporally, we predicted higher colony growth on leachate from autumn-shed (senescent) leaves compared with leachate from fresh, green leaves.
2. We examined spatial differences in assemblage growth by culturing bacteria sampled along the stream continuum on gradient plates using leachates from four common riparian species ( Taxodium distichum , Carya spp., Acer rubrum and Decumaria barbara ). Bacteria from the lowest site were able to use all sources provided and at all concentrations, whereas bacteria from upper reaches could not. Colony density was correlated to relative leachate concentration at all sites along the continuum.
3. Leachates from fresh and senescent A. rubrum leaves were used to determine temporal differences. Winter assemblages of bacteria could not grow on fresh leaf leachate at any concentration but grew well on autumn leaf leachate at higher concentrations. Differential response of bacterial assemblages indicated local adaptation to potential sources of dissolved organic matter.
4. Growth response of stream bacterial colonies appeared to be dependent on the timing and source of leachate as well as on sources of dissolved organic carbon from further upstream. Growth of bacterial assemblages exhibited 'generalist' characteristics in headwater reaches and 'specialist' characteristics at the mouth of our study stream drainage. Thus, our findings lend support to the argument that variable resource habitats favour a small, generalist assemblage, while environments with stable resource supplies allow for highly diverse assemblages dominated by specialists. 相似文献
2. We examined spatial differences in assemblage growth by culturing bacteria sampled along the stream continuum on gradient plates using leachates from four common riparian species ( Taxodium distichum , Carya spp., Acer rubrum and Decumaria barbara ). Bacteria from the lowest site were able to use all sources provided and at all concentrations, whereas bacteria from upper reaches could not. Colony density was correlated to relative leachate concentration at all sites along the continuum.
3. Leachates from fresh and senescent A. rubrum leaves were used to determine temporal differences. Winter assemblages of bacteria could not grow on fresh leaf leachate at any concentration but grew well on autumn leaf leachate at higher concentrations. Differential response of bacterial assemblages indicated local adaptation to potential sources of dissolved organic matter.
4. Growth response of stream bacterial colonies appeared to be dependent on the timing and source of leachate as well as on sources of dissolved organic carbon from further upstream. Growth of bacterial assemblages exhibited 'generalist' characteristics in headwater reaches and 'specialist' characteristics at the mouth of our study stream drainage. Thus, our findings lend support to the argument that variable resource habitats favour a small, generalist assemblage, while environments with stable resource supplies allow for highly diverse assemblages dominated by specialists. 相似文献
18.
Diurnal changes in dissolved organic and inorganic carbon and nitrogen in a hardwater stream 总被引:2,自引:0,他引:2
Organic and inorganic carbon and nitrogen parameters were sampled simultaneously at 6 h intervals over a diurnal period at seven stations in a small hardwater stream in southern Michigan. Concentrations and budget values (kg/day) varied up to 10-fold at individual stations and between stations. The most constant parameters were total dissolved organic carbon and nitrogen. The most variable parameter was particulate organic carbon. Significant changes were noted in all parameters as the stream passed through different stream-side habitats. Budget values facilitated interpretation of these changes over time between stations. High variability in the concentration values was introduced by large allochthonous inputs of dissolved organic matter (DOM) and water alternately adding to or diluting parameters. Distance from upstream terrestrial DOM sources, DOM residence time, the pulsed nature of DOM inputs and biological utilization of DOM have important effects on the quality and quantity of DOM that enters recipient lakes and rivers. The importance of ground-water flux and DOM content is stressed. The DOM input and turnover within hardwater streams appears t o be in rapid, dynamic equilibrium. 相似文献
19.
PETER KOETSIER III VAUN McARTHUR & LAURA LEFF 《The Plant journal : for cell and molecular biology》2004,37(1):79-89
1. We hypothesized that changes in bacterial colony growth would be correlated to shifts in riparian vegetation (via leachate quality) along a river continuum of a south-eastern, blackwater stream (U.S.A.). Spatially, we expected bacterial assemblages from downstream reaches to utilize more sources of leachate and at higher concentrations than bacteria collected from headwater reaches. Temporally, we predicted higher colony growth on leachate from autumn-shed (senescent) leaves compared with leachate from fresh, green leaves.
2. We examined spatial differences in assemblage growth by culturing bacteria sampled along the stream continuum on gradient plates using leachates from four common riparian species ( Taxodium distichum , Carya spp., Acer rubrum and Decumaria barbara ). Bacteria from the lowest site were able to use all sources provided and at all concentrations, whereas bacteria from upper reaches could not. Colony density was correlated to relative leachate concentration at all sites along the continuum.
3. Leachates from fresh and senescent A. rubrum leaves were used to determine temporal differences. Winter assemblages of bacteria could not grow on fresh leaf leachate at any concentration but grew well on autumn leaf leachate at higher concentrations. Differential response of bacterial assemblages indicated local adaptation to potential sources of dissolved organic matter.
4. Growth response of stream bacterial colonies appeared to be dependent on the timing and source of leachate as well as on sources of dissolved organic carbon from further upstream. Growth of bacterial assemblages exhibited 'generalist' characteristics in headwater reaches and 'specialist' characteristics at the mouth of our study stream drainage. Thus, our findings lend support to the argument that variable resource habitats favour a small, generalist assemblage, while environments with stable resource supplies allow for highly diverse assemblages dominated by specialists. 相似文献
2. We examined spatial differences in assemblage growth by culturing bacteria sampled along the stream continuum on gradient plates using leachates from four common riparian species ( Taxodium distichum , Carya spp., Acer rubrum and Decumaria barbara ). Bacteria from the lowest site were able to use all sources provided and at all concentrations, whereas bacteria from upper reaches could not. Colony density was correlated to relative leachate concentration at all sites along the continuum.
3. Leachates from fresh and senescent A. rubrum leaves were used to determine temporal differences. Winter assemblages of bacteria could not grow on fresh leaf leachate at any concentration but grew well on autumn leaf leachate at higher concentrations. Differential response of bacterial assemblages indicated local adaptation to potential sources of dissolved organic matter.
4. Growth response of stream bacterial colonies appeared to be dependent on the timing and source of leachate as well as on sources of dissolved organic carbon from further upstream. Growth of bacterial assemblages exhibited 'generalist' characteristics in headwater reaches and 'specialist' characteristics at the mouth of our study stream drainage. Thus, our findings lend support to the argument that variable resource habitats favour a small, generalist assemblage, while environments with stable resource supplies allow for highly diverse assemblages dominated by specialists. 相似文献
20.
Complexation between Hg(II) and dissolved organic matter in stream waters: an application of fluorescence spectroscopy 总被引:2,自引:0,他引:2
Complexation between Hg(II) and dissolved organic matter (DOM) collected from streams in Ontario, Canada, was studied using three-dimensional excitation emission matrix (3DEEM) fluorescence spectroscopy. The results show that DOM reacted with Hg(II) rapidly, and the complexation reached pseudo-equilibrium within 20 s. Maximum excitation/emission (Ex/Em) wavelengths shifted towards the longer wavelengths, indicating that DOM structure changed during its interaction with Hg(II). Using fluorescence quenching titrations, complexing parameters, conditional stability constants and the percentage of fluorophores participating in the complexation, were estimated by the modified Stern–Volmer equation. The experimental and field survey results suggest that the Hg–DOM complexation in various streams was related to water quality parameters, e.g. DOC, Cl–, and cation concentrations, and was strongly affected by UV irradiation. 相似文献