首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A simple method to determine thein vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5–6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 ώg/L to 1.0 ώg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, thein vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.  相似文献   

2.
本文报道了用化学半合成途径从天然猪胰岛素制备[B2-Lys]-胰岛素的过程。人胎盘细胞膜胰岛素受体结合试验表明:[B2-Lys]-胰岛素的受体结合能力只有天然胰岛素的80%,降兔血糖作用与时间关系的结果表明它没有长效作用。本文还对这些结果进行了讨论。  相似文献   

3.
Fatty acid (FA) and glucose transport into insulin-dependent cells are impaired in insulin resistance (IR; type 2 diabetes mellitus). Studies done on the effects of FAs on glucose uptake, and the influence of insulin on FA uptake by adipocytes, have yielded contradictory results. In this study, isolated human adipocytes were exposed to arachidonic acid (AA) and to insulin, and FA uptake as well as glucose uptake was measured. AA uptake into adipocyte membranes and nuclei was also investigated. Glucose uptake was inhibited by 57 +/- 8% after 30 min of exposure to arachidonate. AA was significantly taken up into adipocyte membranes (49.6 +/- 29% and 123 +/- 74%) at 20 and 30 min of exposure, respectively, and into nuclei (147.6 +/- 19.2%) after 30 min. Insulin stimulated AA uptake (24.1 +/- 14.1%) at 30 min by adipocytes from a non-obese subject, while inhibiting it (16.6 +/- 12%) in adipocytes from an obese subject. These results suggest that: (1) AA inhibits glucose uptake by adipocytes exposed over a short period, probably by a membrane-associated mechanism, (2) insulin-dependent AA uptake is dependent on the body mass index (BMI) of the donor and the insulin sensitivity of their adipocytes.  相似文献   

4.
Based on recent studies showing that PLCgamma associates to insulin receptor, we investigated its role in insulin stimulation of glucose transport in brown adipocytes. Insulin stimulation induced rapid PLCgamma association to phosphorylated insulin receptor, and activation of PLCgamma, as assessed by the mobilization of Ca(2+) from intracellular stores and by the production of the second messenger DAG. Both events are dependent on activation of PI3-kinase. Inhibition of PLCgamma activity either with the chemical compound U73122 or with an inhibitor peptide precluded insulin stimulation of glucose uptake, GLUT4 translocation, and actin reorganization, as wortmannin did. In contrast, the inactive analog U73343 did not have an inhibitory effect. Furthermore, translocation of GLUT4-GFP in response to insulin was completely abolished by cotransfection with a PLCgamma-inactive mutant in HeLa cells, a cell model sensitive to insulin that express PLCgamma. U73122 did not affect PI3-kinase nor Akt activation, but impaired PKCzeta activation by insulin, as wortmannin did. PLC activity renders two products, IP(3) and DAG, and DAG can be metabolized to PA by the action of DAG-kinase. Using the compound R54494, a DAG-kinase inhibitor, insulin-induced PKCzeta activation was also suppressed, this activity being restored by addition of PA. In summary, these data indicate that PLCgamma, activated at least partially by PI3-kinase, is a link between insulin receptor and PKCzeta through the production of PA and could mediate insulin-induced glucose uptake and GLUT4 translocation.  相似文献   

5.
Summary The binding affinity of sulphated insulin compared with unmodified, neutral insulin has been reported to be approximately four times lower in human and rat adipocytes but over twenty times lower in rat hepatocytes. In the present study the biological action of sulphated insulin was assesed in rat hepatocytes and human and rat adipocytes. To achieve half-maximal stimulation of fatty acid synthesis in rat hepatocytes about twenty one times higher concentrations of sulphated than neutral insulin were required (15.07±5.50 vs 0.71±0.34 nmol/l), this ratio being similar to the ratio of binding affinity in rat hepatocytes. In human adipocytes, half-maximal stimulation of initial rates of glucose uptake was observed at 11.6±5.1 vs 2.9±1.3 pmol/l for sulphated and neutral insulin respectively, and half-maximal inhibition of lipolysis at 31.0±13.5 vs 7.3+2.5 pmol/I respectively. These data are consistent with the four-fold lower binding affinity of sulphated insulin to human adipocytes. However, in rat adipocytes the biological potency of sulphated insulin was found to be much lower than anticipated from the binding data, half-maximal stimulation of initial rates of glucose uptake being observed at 757±299 vs 35±13 pmol/l respectively and half-maximal inhibition of lipolysis at 35.9±12.1 vs 1.5±0.5 pmol/l respectively. Thus, in rat adipocytes, approximately 22 times the concentration of sulphated insulin was required to achieve equivalent biological effect. A discrepancy between binding affinity and biological action with respect to sulphated insulin was identified in rat adipocytes but not human adipocytes nor rat hepatocytes suggesting differences in the binding-action linkage in these cells.  相似文献   

6.
Summary In rat adipocytes, the insulin stimulation of the rate of glucose uptake is due, at least partially, to the recruitment of glucose transporter proteins from an intracellular compartment to the plasma membrane.Vanadate is a known insulin mimetic agent and causes an increase in the rate of glucose transport in rat adipocytes similar to that seen with insulin. The objective of the present study was to determine whether vanadate exerts its effect through the recruitment of glucose transporters to the plasma membrane.We report that under conditions where vanadate stimulates the rate of 2-deoxyglucose uptake to the same extent as insulin, the concentration of GLUT-4 in the plasma membrane was increased similarly by both insulin and vanadate, and its concentration was decreased in the low density microsomal fraction. These results suggest that vanadate induces the recruitment of GLUT-4 to the plasma membrane. The effects of vanadate and insulin on the stimulation of 2-deoxyglucose uptake and recruitment of GLUT-4 were not additive.This is the first report of an effect of vanadate on the intracellular distribution of the glucose transporter.  相似文献   

7.
The present study investigated the effect of insulin on phosphatidylcholine turnover in rat adipocytes labelled to equilibrium with [14C]-choline. Insulin induced a rapid turnover of this major phospholipid that was maximal by 1 min and transient in nature. Following a 1 min stimulation of the cells with insulin at a maximally effective concentration (7 nM), a 4–6% decrease in the percentage of total cellular choline associated with this phospholipid was observed. This reflected a significant transient increase in the percentage of total cellular choline associated with phosphorylcholine, which together with diacylglycerol are the phospholipase C cleavage products of phosphatidylcholine. These effects were observed over a physiological range of insulin concentrations. No effect of insulin on any other choline phospholipid or metabolite (sphingomyelin, lysophophatidylcholine, glycerophosphocholine or choline) was seen. These results suggest that insulin stimulates a phospholipase C-mediated turnover of phosphatidylcholine in rat adipocytes. The rapid nature of this turnover suggests a potential role in signal transduction.  相似文献   

8.
[B3-Lys]-胰岛素的研究:受体结合及生物活性   总被引:3,自引:0,他引:3  
本文用125T-[B3-Lys]-胰岛素和125Ⅰ-胰岛素研究了[B3-Lys]-胰岛素和胰岛素与人胎盘细胞膜(HPM)胰岛素受体结合特性并进行了比较。实验结果表明[B3-Lys]-胰岛素与EPM胰岛素受体结合能力比天然猪胰岛素高。由竞争取代曲线得到的[B3-Lys]-胰岛素和猪胰岛素的IC(50)值分别为0.65和1.11nmol/L。经Scatchard分析得出[B3-Lys]-胰岛素与HPM胰岛素受体中高亲和位点和低亲和位点结合的亲和常数分别为1.72×109和2.27×106L/mol,而猪胰岛素分别为1.26×109和1.47×106/mol。促脂肪细胞合成脂肪实验结果表明[B3-Lys]-胰岛素也同样具有比天然猪胰岛素更高的离体生物活力,EC(50)分别为0.175和0.301nmol/L。可见[B3-Lys]-胰岛素的受体结合能力和高体生物活力都为猪胰岛素的1.7倍。  相似文献   

9.
This study was designed to understand the cellular mechanisms responsible for defects in the insulin-stimulated signal transduction pathway in a type 2 diabetic animal model. We examined the in vitro PC-1 phosphodiesterase activity and glucose uptake in adipose tissue of streptozotocin (STZ)-induced type 2 diabetic rats. The PC-1 activity was significantly increased in adipose tissue of diabetic rats (0.54 ± 0.08 nmol PNTP hydrolyzed/mg protein/min) compared with controls (0.29 ± 0.05 nmol PNTP hydrolyzed/mg protein/min, p < 0.05). Upon insulin stimulation (100 nM), glucose uptake in the adipose tissue of the controls (4.17 ± 1.28×10−8 μmol/mg/min) was significantly higher than that in the diabetic rats (1.26 ± 0.35×10−8; p < 0.05). These results suggest that elevated PC-1 phosphodiesterase activity and decreased glucose uptake in adipose tissues may be acquired characteristics contributing to the development of type 2 diabetes mellitus.  相似文献   

10.
Considerable data have been reported on the relationship between insulin resistance and zinc deficiency. In this study, insulin receptor binding was measured in isolated rat adipocytes. Two assays were carried out at 37°C (binding and internalization) and 16°C (binding) using125I insulin 0.05–20 nM. A decreased insulin receptor binding was observed in zinc-deficient rat adipocytes, but we could not make any distinction between the specific zinc depletion effects and the effects of the caloric restriction induced by zinc deficiency.  相似文献   

11.
Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3‐kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin‐activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho‐aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho‐aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport.  相似文献   

13.
The effects of different vanadium compounds namely pyridine-2,6-dicarboxylatedioxovanadium(V) (V5-dipic), bis(maltolato) oxovanadium(IV) (BMOV) and amavadine, and oligovanadates namely metavanadate and decavanadate were analysed on basal and insulin stimulated glucose uptake in rat adipocytes. Decavanadate (50 μM), manifest a higher increases (6-fold) on glucose uptake compared with basal, followed by BMOV (1 mM) and metavanadate (1 mM) solutions (3-fold) whereas V5 dipic and amavadine had no effect. Decavanadate (100 μM) also shows the highest insulin like activity when compared with the others compounds studied. In the presence of insulin (10 nM), only decavanadate increases (50%) the glucose uptake when compared with insulin stimulated glucose uptake whereas BMOV and metavanadate, had no effect and V5 dipic and amavadine prevent the stimulation to about half of the basal value. Decavanadate is also able to reduce or eradicate the suppressor effect caused by dexamethasone on glucose uptake at the level of the adipocytes. Altogether, vanadium compounds and oligovanadates with several structures and coordination spheres reveal different effects on glucose uptake in rat primary adipocytes.  相似文献   

14.
Silybin, the major flavonoid of Silybum marianum, is widely used to treat liver diseases such as hepatocellular carcinoma and cirrhosis-associated insulin resistance. Research so far has focused on its anti-oxidant properties. Here, we demonstrate that silybin and its derivative dehydrosilybin inhibit glucose uptake in several model systems. Both flavonoids dose-dependently reduce basal and insulin-dependent glucose uptake of 3T3-L1 adipocytes, with dehydrosilybin showing significantly stronger inhibition. However, insulin signaling was not impaired, and immunofluorescence and subcellular fractionation showed that insulin-induced translocation of GLUT4 to the plasma membrane is also unchanged. Likewise, hexokinase activity was not affected suggesting that silybin and dehydrosilybin interfere directly with glucose transport across the PM. Expression of GLUT4 in CHO cells counteracted the inhibition of glucose uptake by both flavonoids. Moreover, treatment of CHO cells with silybin and dehydrosilybin reduced cell viability which was partially rescued by GLUT4 expression. Kinetic analysis revealed that silybin and dehydrosilybin inhibit GLUT4-mediated glucose transport in a competitive manner with K(i)=60 and 116 μM, respectively. We conclude that silybin and dehydrosilybin inhibit cellular glucose uptake by directly interacting with GLUT transporters. Glucose starvation offers a novel explanation for the anti-cancer effects of silybin.  相似文献   

15.
The effects of chronic cadmium exposure on adipose tissue have not been extensively reported. In adult Wistar male rats we investigated in vivo effect of 6 weeks lasting cadmium intake in drinking tap water (CdCl2 9,7 mg/l). Insulin receptors in isolated adipocytes from epididymal fat and glucose transporter protein GLUT4 content in fat tissue plasma membranes were determined. Control and Cd treated rats had similar water intake with subsequent heavy augmentation of Cd content in liver of experimental animals. In comparison with controls, Cd intake did not influence body mass increment and fat cell size, but significantly increased serum glycemia and moderately elevated insulinemia. Cadmium intake significantly reduced (50%) both, total insulin receptors number and density of the receptors in fat cells. No differences in the content of GLUT4 in crude plasma membranes of adipose tissue were observed. Diminished insulin receptors in adipocytes could account for diabetogenic effect of long lasting cadmium intake.  相似文献   

16.
The increase in body and white adipose tissue weights induced by a high-fat diet were prevented by treatment with the beta3-adrenergic agonist Trecadrine. Plasma insulin levels were slightly elevated in overweight rats, while a decrease was observed in Trecadrine-treated groups. Insulin-dependent glucose uptake was impaired in adipocytes of the overweight rats in relation to lean animals. The beta3-adrenergic agonist induced an increase in insulin-stimulated glucose uptake by adipocytes as compared to the nontreated animals. In fact, Trecadrine treatment was able to restore to control values the impairment in insulin-mediated glucose uptake induced by the cafeteria diet, suggesting that Trecadrine prevents the development of insulin resistance in overweight animals. Basal leptin secretion was increased in adipocytes of the overweight rats in relation to lean animals. Trecadrine treatment induced a decrease in basal leptin secretion compared to the untreated animals. Insulin-stimulated leptin secretion reached similar levels in adipocytes of the overweight rats as in lean animals. There was a trend for insulin-induced leptin secretion to be lower at 24 h in Trecadrine-treated rats, but it did not reach statistical significance. In conclusion, adipocytes of diet-induced overweight animals have a higher basal leptin secretion, which is reduced by treatment with Trecadrine. However, neither the cafeteria diet nor the Trecadrine treatment significantly alters the ability of adipocytes to increase leptin secretion in response to insulin.  相似文献   

17.
The following study was done to assess the glucose utilizing efficiency of Indoloquinoxaline derivative incorporated keratin nanoparticles (NPs) in 3T3-L1 adipocytes. Indoloquinoxaline derivative had wide range of biological activities including antidiabetic activity. In this view, Indoloquinoxaline moiety containing N, N-dimethyl (3-fluoro-6H-indolo [3,2-b] quinoxalin-6-yl) methanamine compound was designed and synthesized, and further it is incorporated into keratin nanoparticles. The formulated NPs, drug entrapment efficiency, releasing capacity, stability, and physicochemical properties were characterized by various spectral analyzer and obtained results of characterizations were confirmed the properties of NPs. The analysis of mechanism underlying the glucose utilization of NPs was examined through molecular docking with identified target, and observed in silico study reports shown strong interaction of NPs in the binding pockets of AMPK and PTP1B. Based on the in silico screening, the formulated NPs was performed for in vitro cellular viability and glucose uptake studies on 3T3-L1 adipocytes. Interestingly, 40 μg of NPs displayed 78.2 ± 2.76% cellular viability, and no cell death was observed at lower concentrations. Further, the concentration dependent glucose utilization was observed at different concentrations of NPs in 3T3-L1 adipocytes. The results of NPs (40 μg) on glucose utilization have revealed eminent result 58.56 ± 4.54% compared to that of Metformin (10 μM) and Insulin (10 μM). The identified results clearly indicated that Indoloquinoxaline derivative incorporated keratin NPs significantly increased glucose utilization efficiency and protect the cells against the insulin resistance.  相似文献   

18.
Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.  相似文献   

19.
20.
Human adipocytes from patients with chronic endogenous hypercortisolism (Cushing's syndrome) showed a statistically significant decrease in insulin binding at low unlabelled-insulin concentrations but no change in receptor numbers (Cushing's 180,000±48,000 (3) receptors/cell and controls 189,000±30,000 (7)) together with a fourfold decrease in apparent receptor affinity (ED50: Cushing's 2.25×10–9 M and controls 0.57×10–9 M) and a decreased sensitivity to the antilipolytic effect of insulin. These events could represent the final situation of a chronic and endogenous regulation by high levels of cortisol of insulin receptors in human adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号