首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spindle-pole organization during early mouse development   总被引:2,自引:0,他引:2  
Spindle-pole organization during early mouse development was examined using a variety of immunological reagents that recognize centrosomal components. Spindle poles of unfertilized eggs and blastocysts were found to react positively with two antisera (centrin and NRS-01), whereas poles of activated eggs and early cleavage-stage embryos were negative when treated with the same sera. In contrast, a third antiserum (5051) showed positive spindle-pole staining throughout the preimplantation stages of development. Two monoclonal antibodies (MPM-1 and MPM-2) that are known to react with mitotic phosphoproteins were also used in this study. Both antibodies stained the cytoplasm of mitotic cells with extremely high intensity. In addition, MPM-2 was found to stain spindle poles. These results suggest that organizational changes in the spindle pole are occurring during early mouse development. Embryos homozygous for a recessive lethal mutation known as oligosyndactyly (Os) were also treated with the reagents described above. This mutation results in a metaphase arrest at the blastocyst stage with intact spindles being present. Spindle poles were observed in Os homozygous mutants stained with centrin, NRS-01, and 5051. However, when Os mutants were stained with the MPM monoclonal antibodies, about half of the mitotic cells completely lacked the dramatic cytoplasmic staining. This observation is in contrast to that observed for wild-type embryos, where greater than 95% of mitotic cells showed positive cytoplasmic staining.  相似文献   

2.
3.
Synthesis and phosphorylation of uvomorulin during mouse early development.   总被引:5,自引:0,他引:5  
The cell adhesion molecule, uvomorulin, is synthesised in both the 135 x 10(3) M(r) precursor and 120 x 10(3) M(r) mature forms on maternal mRNA templates in unfertilized and newly fertilized mouse oocytes. Synthesis on maternal message ceases during the 2-cell stage to resume later on mRNA encoded presumptively by the embryonic genome. Uvomorulin is detectable by immunoblotting at all stages upto the blastocyst stage, but shows variations in its total amount and processing with embryonic stage. Whilst only trace levels of phosphorylated uvomorulin are detectable in early and late 4-cell embryos, uvomorulin in 8-cell embryos is phosphorylated.  相似文献   

4.
We report the expression pattern of a murine homolog of the Xenopus laevis T-box gene Eomesodermin. mEomes expression is first detected in the extra-embryonic ectoderm prior to gastrulation, and persists there until head-fold stages. In the embryo proper, mEomes is expressed throughout the early primitive streak, nascent mesoderm and in the anterior visceral endoderm. Although mEomes expression disappears from the embryo at late-streak stages, a second domain of mEomes expression is observed in the telencephalon beginning around E10.5.  相似文献   

5.
6.
7.
探讨p38 MAPK在小鼠着床前胚胎期的表达图式,并对其作用作初步分析。用免疫印迹法分析胚胎全裂解物中的p38蛋白。为考察p38在着床前发育中的作用,在胚胎培养液中添加p38专一性抑制剂SB203580。此外对同位素标记的胚胎作双向电泳分析,示踪ZGA(zygotic gene activation,合子型基因激活)标志物TRC的表达情况。在卵母细胞中能检测到低水平的p38蛋白,而在合子中的检测度更低,表明p38是贮存于卵母细胞内的母型转录物,自减数分裂期随其它母型转录物一起逐步降解。到2细胞中期p38蛋白的表达量开始恢复,在4细胞时达到顶峰,在8细胞时又跌落。D38蛋白在2到4细胞期的表达量上升提示该蛋白在小鼠着床前胚胎发育中可能发挥一定作用。经与p38抑制剂SB203580共培养后的2细胞中期胚胎中仍能清晰检测到TRC,因而以TRC为标志的ZGA对SB203580不敏感。SB203580同样不能阻止胚胎发育到桑椹胚期。  相似文献   

8.
9.
RNA polymerase activity in mouse embryo homogenates has been measured at various stages of pre-implantation development. The amount of enzyme/embryo appears to increase in the period under consideration. On a per cell basis a decline in the level of polymerase was, however, observed from the 2-cell to the early blastocyst stages.  相似文献   

10.
Studies of the cell cycle of mouse embryos before implantation were conducted using Giemsa and DAPI stains. The time of embryo recovery did not affect the success rate of cultures during the winter, but embryos cultured during the summer showed the 'two-cell block' phenomenon at the early two-cell stage, 30-37 h after the injection of human chorionic gonadotrophin. There was no significant difference in the number of embryos collected per mouse between summer and winter, but cleavage from the two-cell to the four-cell stage occurred later in the summer than in the winter. Cell cycle of mouse embryos may therefore show seasonal variation.  相似文献   

11.
12.
During cleavage, the mouse embryo expresses a variety of cell adhesion systems on its cell surfaces. We have reviewed biogenetic and assembly criteria for the formation of the uvomorulin/catenin, tight junction and desmosome adhesion systems as the trophectoderm differentiates. Each system reveals different mechanisms regulating molecular maturation. Adhesion processes contribute to the generation of distinct tissues in the blastocyst by modifying the expression pattern of blastomeres entering the non-epithelial inner cell mass lineage. Cell adhesion also influences the spatial organisation, but rarely the timing of expression, of proteins involved in trophectoderm differentiation.  相似文献   

13.
Apoptosis signal-regulating kinase 1 (ASK1) is an important regulator of stress-induced cell death. ASK1 is activated by oxidative stress, TNF and endoplasmatic reticulum stress and activates the JNK- and p38-dependent intracellular death pathways. A number of studies have suggested that ASK1 may also have other roles in addition to its pro-apoptotic activity. Expression of ASK1 during early embryonic development has so far not been analyzed. We have identified and cloned chick ASK1 in a screen for FGF8 inducible genes in chick facial mesenchyme. Here we report the expression of chick ASK1 from the gastrulation stage (HH4) to day 4 of development, its expression in the developing inner organs and limbs, and we compare its expression to the expression of Ask1 during mouse development. Furthermore, we provide evidence that FGF signaling is required for ASK1 expression in chick nasal mesenchyme. In contrast, expression in the mouse nasal region was restricted to the epithelium and was independent of FGF signaling. Our analysis demonstrates that ASK1 has a spatially restricted and temporally dynamic expression pattern in both chick and mouse embryos, which includes conserved as well as species-specific expression domains.  相似文献   

14.
15.
16.
17.
18.
alpha-Tubulin in the microtubules of mouse oocytes and embryos is acetylated in a specific spatial and temporal sequence. In the unfertilized oocyte, a monoclonal antibody to the acetylated form of alpha-tubulin is bound predominantly at the poles of the arrested metaphase meiotic spindle. The labeling intensity of the spindle microtubules is weaker as observed by immunofluorescence using oocytes double-labeled for total tubulin and acetylated alpha-tubulin, and as measured by immuno high-voltage electron microscopy (immunoHVEM) with colloidal gold; cytasters are not acetylated. At meiotic anaphase, the spindle becomes labeled, and by telophase and during second polar body formation only the meiotic midbody is acetylated. The sperm axoneme retains its acetylation after incorporation though the interphase microtubules are not detected. First mitosis follows a pattern similar to that observed at the second meiosis and during interphase only the mitotic midbodies are acetylated. After treatment with cold, colcemid, or griseofulvin, the remaining stable microtubules are acetylated, but immunoHVEM observations suggest that these fibers might not have been acetylated prior to microtubule disruption. Taxol stabilization does not alter acetylation patterns. Acetylated microtubules are not necessarily old microtubules since acetylated fibers are observed at 30 sec after cold recovery. These results show the presence of acetylated microtubules during meiosis and mitosis and demonstrate a cell-cycle-specific pattern of acetylation, with acetylated microtubules found at the centrosomes at metaphase, an increase in spindle labeling at anaphase, and the selective deacetylation of all but midbody microtubules at telophase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号