首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
甲硫氨酰氨肽酶在蛋白质加工过程中负责切除新生肽链N端的起始甲硫氨酸,是正常生理功能所必需的。烟曲霉素类血管生成抑制在体内的分子靶点是甲硫氨酰氨肽酶-2,根据甲硫氨酰氨肽酶的结构以及催化和抑制机制,可以设计和合成新型的血管生成抑制剂;以甲硫氨酰氨肽酶为分子靶点,通过最新发展的活性检测方法建立高通量药物筛选模型,可以寻找甲硫氨酰氨肽酶的小分子抑制剂用于抗肿瘤新药的开发。  相似文献   

2.
在病毒侵染和复制过程中,病毒与宿主之间存在广泛的蛋白质-蛋白质相互作用。本研究建立了一个小菜蛾幼虫cDNA文库,用于筛查与小菜蛾颗粒体病毒(Plutella xylostella granulovirus,PlxyGV)蛋白相互作用的小菜蛾幼虫蛋白。pp31同源基因存在于所有鳞翅目昆虫杆状病毒。其编码产物是一种磷蛋白,与病毒基因表达调控相关。本研究通过酵母双杂交实验从小菜蛾幼虫cDNA文库中筛选出两个与PlxyGV PP31相互作用的蛋白质基因。序列分析结果显示这两个基因的预期编码产物分别是小菜蛾蛋白激酶C受体(RACK)和一种甲硫氨酰氨肽酶2(MetAP2)同源蛋白。原核表达和蛋白质纯化实验结果显示,rack与6-组氨酸编码序列的融合基因的表达产物是一个38kD多肽。在GST-pulldown实验中,RACK蛋白随同GST-PP31融合蛋白一起吸附于GST亲和树脂,进一步证实了小菜蛾RACK蛋白与PlxyGV PP31发生相互作用。  相似文献   

3.
在防止硫硫鍵交換的条件下,用亚硫酸鈉作用于胰蛋白酶的硫硫鍵,于测定硫硫鍵破坏数目的同时,以血紅蛋白、苯甲酰精氨酰胺,对甲苯磺酰精氨酰甲酯測定剩余酶活力的結果用前文提出的判断方法作图表明胰蛋白酶六个硫硫鍵中的三个是必需的。  相似文献   

4.
氨酰tRNA合成酶的分子网络和功能   总被引:3,自引:0,他引:3  
氨酰tRNA合成酶是生命进化过程中最早出现的一类蛋白质,氨酰tRNA合成酶帮助氨基酸转移到相应的tRNA上,进而参与蛋白质的合成保证了生命体的严谨性和多样性.随着后基因组时代的到来,氨酰tRNA合成酶的结构和功能成为新的研究热点.结构生物学和生物信息学的研究结果表明,氨酰tRNA合成酶在真核生物体内以多聚复合物的形式行使功能,形成复杂的分子网络体系.最新的实验证据显示,氨酰tRNA合成酶不但是蛋白质合成过程中一类最重要的酶,而且参与了转录、翻译水平的调控、RNA剪接、信号传导和免疫应答等众多生命活动.  相似文献   

5.
氨酰t RNA合成酶作为生命进化中出现的最早的蛋白质之一,可促进氨基酸转移到t RNA上,参与生物体蛋白质合成。伴随生物技术革命的到来,氨酰t RNA合成酶内部结构以及生物功能成为国内外学者的研究热点。在真核生物体内,氨酰t RNA合成酶以聚复合物形式表达功能,连接复杂的生物分子体系。氨酰t RNA合成酶作为蛋白质合成中最重要的一类酶,还直接参与、调控、RNA转录、蛋白质翻译、信号传导、RNA剪接以及免疫应答等许多生物的生命体征运动。学者进一步还证实氨酰t RNA合成酶可以作为一种抗肿瘤药物潜在靶点。  相似文献   

6.
氨酰-tRNA合成酶在维持蛋白质合成忠实性方面具有重要的作用.其忠实性机制可以分为正确地选择底物、转位前编辑、顺式转位后编辑和反式转位后编辑4个水平.不同的氨酰-tRNA合成酶能够利用其中的一种或几种机制,将氨基酸和tRNA连接起来,形成正确的氨酰-tRNA.目前,氨酰-tRNA合成酶的研究超出蛋白质合成,已经延伸到了...  相似文献   

7.
氨酰-tRNA合成酶的研究进展   总被引:1,自引:0,他引:1  
氨酰-tRNA合成酶催化特异的氨基酸与同源tRNA氨酰化,从而保证了遗传密码翻译的忠实性。这些古老而保守的蛋白质分子除了具有酶的功能外,在哺乳动物细胞中还发现了多种其他功能,具有重要的应用价值。在寻找具有全新作用机制的新抗生素以应对日益严重的抗生素耐药现象过程中,氨酰-tRNA合成酶是细菌蛋白质合成过程中重要的、新颖的靶标,成为关注的重点。定向突变的氨酰-tRNA合成酶可以用来定点掺入非天然氨基酸,扩展蛋白质工程。今后,随着人们对氨酰-tRNA合成酶研究的不断深入,它们还可能用来治疗肿瘤等多种疾病。  相似文献   

8.
甲酰肽受体研究进展   总被引:6,自引:0,他引:6  
程希远  王明伟 《生命科学》2004,16(3):154-159
趋化剂N-甲酰肽,如fMLF(N-甲酰甲硫氨酰-亮氨酰-苯丙氨酸)与受体结合后,能在炎症和免疫应急反应时募集嗜中性粒细胞游走和聚集在病灶处,对抗并清除病原微生物。近年来发现的许多结构各异的非N-甲酰肽配体(包括炎症早期出现的内源性多肽)均具有趋化和激活噬菌性白细胞的作用。这些研究进展拓展了我们对甲酰肽受体功能的认识,同时也提出一系列新问题,值得深入探讨。  相似文献   

9.
谭敏  王恩多 《生命科学》2012,(6):511-517
TORC1(target of rapamycin complex 1)可整合营养、能量、生长因子及氨基酸等多种细胞外信号,调控基因转录、蛋白质翻译、核糖体合成等生物过程,在细胞生长和凋亡中发挥极为重要的作用。亮氨酰-tRNA合成酶(LeuRS)的经典功能是催化合成亮氨酰-tRNA直接参与遗传信息的解码合成蛋白质。最新研究结果表明人细胞质LeuRS除了经典功能外,还参与调控TORC1途径。综述了LeuRS的非经典功能,它是如何通过感受细胞内的亮氨酸浓度来调节TORC1活性的。这些结果表明了古老的氨基酰-tRNA合成酶家族在进化的过程中被赋予了新的功能。  相似文献   

10.
利用基于液相色谱串联Orbitrap质谱(Q Exactive)的非标定量(Label-free)技术,对小麦抗病单基因近等基因系Taichung29*6/Yr10和背景品种Taichung29叶片的蛋白质表达进行了比较分析。经MASCOT软件搜库,在两个样品中共同鉴定到2 257个蛋白,其中有准确定量信息的蛋白共1 549个,含量变化大于2倍的差异蛋白有102个。对102个差异表达蛋白进行了Gene Ontology(GO)功能注释和分析,发现他们多数定位于细胞基质和核糖体等细胞器,具备结合、催化等功能,主要参与代谢、细胞过程、应激等生物学进程,其中超氧化物歧化酶、甲硫氨酰氨肽酶、溶酶体-β-葡萄糖苷酶和铁蛋白等可能与小麦抗病单基因近等基因系Taichung 29*6/Yr10的抗病性有一定相关性。  相似文献   

11.
Methionine aminopeptidases (MetAPs) represent a unique class of protease that is capable of the hydrolytic removal of an N-terminal methionine residue from nascent polypeptide chains. MetAPs are physiologically important enzymes; hence, there is considerable interest in developing inhibitors that can be used as antiangiogenic and antimicrobial agents. A detailed kinetic and spectroscopic study has been performed to probe the binding of a triazole-based inhibitor and a bestatin-based inhibitor to both Mn(II)- and Co(II)-loaded type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs. Both inhibitors were found to be moderate competitive inhibitors. The triazole-type inhibitor was found to interact with both active-site metal ions, while the bestatin-type inhibitor was capable of switching its mode of binding depending on the metal in the active site and the type of MetAP enzyme.  相似文献   

12.
Swierczek K  Copik AJ  Swierczek SI  Holz RC 《Biochemistry》2005,44(36):12049-12056
Two residues that are conserved in type-I methionyl aminopeptidases (MetAPs) but are absent in all type-II MetAPs are the cysteine residues (Escherichia coli MetAP-I: C59 and C70) that reside at the back of the substrate recognition pocket. These Cys residues are 4.4 A apart and do not form a disulfide bond. Since bacteria and fungi contain only type-I MetAPs while all human cells contain both type-I and type-II MetAPs, type-I MetAPs represent a novel antibiotic/antifungal target if type-I MetAPs can be specifically targeted over type-II. Based on reaction of the thiol-specific binding reagent 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) with the type-I MetAP from E. coli and the type-II MetAP from Pyrococcus furiosus, the type-I MetAP can be selectively inhibited. Verification that DTNB covalently binds to C59 in EcMetAP-I was obtained by mass spectrometry (MS) from reaction of DTNB with the C59A and C70A mutant EcMetAP-I enzymes. In addition, two inhibitors of EcMetAP-I, 5-iodopentaphosphonic acid (1) and 6-phosphonohexanoic acid (2), were designed and synthesized. The first was designed as a selective-C59 binding reagent while the second was designed as a simple competitive inhibitor of EcMetAP. Indeed, inhibitor 1 forms a covalent interaction with C59 based on activity assays and MS measurements, while 2 does not. These data indicate that type-I MetAPs can be selectively targeted over type-II MetAPs, suggesting that type-I MetAPs represent a new enzymatic target for antibacterial or antifungal agents.  相似文献   

13.
Methionine aminopeptidases (MetAPs) remove the initiator methionine during protein biosynthesis. They exist in two isoforms, MetAP1 and MetAP2. The anti-angiogenic compound fumagillin binds tightly to the Type 2 MetAPs but only weakly to Type 1. High-affinity complexes of fumagillin and its relative ovalicin with Type 2 human MetAP have been reported. Here we describe the crystallographic structure of the low-affinity complex between ovalicin and Type 1 human MetAP at 1.1 A resolution. This provides the first opportunity to compare the structures of ovalicin or fumagillin bound to a Type 1 and a Type 2 MetAP. For both Type 1 and Type 2 human MetAPs the inhibitor makes a covalent adduct with a corresponding histidine. At the same time there are significant differences in the alignment of the inhibitors within the respective active sites. It has been argued that the lower affinity of ovalicin and fumagillin for the Type 1 MetAPs is due to the smaller size of their active sites relative to the Type 2 enzymes. Comparison with the uncomplexed structure of human Type 1 MetAP indicates that there is some truth to this. Several active site residues have to move "outward" by 0.5 Angstroms or so to accommodate the inhibitor. Other residues move "inward." There are, however, other factors that come into play. In particular, the side chain of His310 rotates by 134 degrees into a different position where (together with Glu128 and Tyr195) it coordinates a metal ion not seen at this site in the native enzyme.  相似文献   

14.
Methionine aminopeptidase (MetAP) carries out the cotranslational N-terminal methionine excision and is essential for bacterial survival. Mycobacterium tuberculosis expresses two MetAPs, MtMetAP1a and MtMetAP1c, at different levels in growing and stationary phases, and both are potential targets to develop novel antitubercular therapeutics. Recombinant MtMetAP1a was purified as an apoenzyme, and metal binding and activation were characterized with an activity assay using a fluorogenic substrate. Ni(II), Co(II) and Fe(II) bound tightly at micromolar concentrations, and Ni(II) was the most efficient activator for the MetAP-catalyzed substrate hydrolysis. Although the characteristics of metal binding and activation are similar to MtMetAP1c we characterized before, MtMetAP1a was significantly more active, and more importantly, a set of inhibitors displayed completely different inhibitory profiles on the two mycobacterial MetAPs in both potency and metalloform selectivity. The differences in catalysis and inhibition predicted the significant differences in active site structure.  相似文献   

15.
Divalent metal ions play a critical role in the removal of N-terminal methionine from nascent proteins by methionine aminopeptidase (MetAP). Being an essential enzyme for bacteria, MetAP is an appealing target for the development of novel antibacterial drugs. Although purified enzyme can be activated by several divalent metal ions, the exact metal ion used by MetAP in cells is unknown. Many MetAP inhibitors are highly potent on purified enzyme, but they fail to show significant inhibition of bacterial growth. One possibility for the failure is a disparity of the metal used in activation of purified MetAP and the metal actually used by MetAP inside bacterial cells. Therefore, the challenge is to elucidate the physiologically relevant metal for MetAP and discover MetAP inhibitors that can effectively inhibit cellular MetAP. We have recently discovered MetAP inhibitors with selectivity toward different metalloforms of Escherichia coli MetAP, and with these unique inhibitors, we characterized their inhibition of MetAP enzyme activity in a cellular environment. We observed that only inhibitors that are selective for the Fe(II)-form of MetAP were potent in this assay. Further, we found that only these Fe(II)-form selective inhibitors showed significant inhibition of growth of five E. coli strains and two Bacillus strains. We confirmed their cellular target as MetAP by analysis of N-terminal processed and unprocessed recombinant glutathione S-transferase proteins. Therefore, we conclude that Fe(II) is the likely metal used by MetAP in E. coli and other bacterial cells.  相似文献   

16.
Inhibitors of methionine aminopeptidases (MetAPs) are treatment options for various pathological conditions. Several inhibitor classes have been described previously, but only few data on the subtype selectivity, which is of crucial importance for these enzymes, is available. We present a systematic study on the subtype- and species-selectivity of MetAP inhibitors that require the binding of an auxiliary metal ion. This includes, in particular, compounds based on the benzimidazole pharmacophore, but also hydroxyquinoline and picolinic acid derivatives. Our data indicates that a significant degree of selectivity can be attained with metal-dependent MetAP inhibitors.  相似文献   

17.
Methionine aminopeptidases (MetAPs) have been studied in vitro as Co(II) enzymes, but their in vivo metal remains to be defined. While activation of Escherichia coli MetAP (EcMetAP1) by Co(II), Mn(II), and Zn(II) was detectable by a colorimetric Met-S-Gly-Phe assay, significant activation by Ni(II) was shown in a fluorescence Met-AMC assay, in addition to Co(II) and Mn(II) activation. When tested on the metal-substituted EcMetAP1s, a few inhibitors that we obtained recently from a random screening on Co-EcMetAP1 either became much weak or lost activity on Mn- or Zn-EcMetAP1, although they kept inhibitory activity on Ni-EcMetAP1. A couple of peptidic inhibitors and the methionine mimetic (3R)-amino-(2S)-hydroxyheptanoic acid (AHHpA, 6) maintained moderate activities on Co-, Mn-, Zn-, and Ni-EcMetAP1s. Our results clearly demonstrate that the metal-substitution has changed the enzyme specificity for substrates and inhibitors. Therapeutic applications call for inhibitors specific for MetAP with a physiologically relevant metal at its active site.  相似文献   

18.
Two spectrophotometric assays have been developed for methionine aminopeptidases (MetAPs). The first method employs a thioester substrate which, upon enzymatic removal of the N-terminal methionine, generates a free thiol group. The released thiol is quantitated using Ellman's reagent. The MetAP reaction is conveniently monitored on a UV-VIS spectrophotometer in a continuous fashion, with the addition of an excess of Ellman's reagent into the assay reaction. Two tripeptide analogues were synthesized and found to be excellent substrates of both Escherichia coli MetAP and human MetAP2 (k(cat)/K(M) = 2.8 x 10(5) M(-1) s(-1) for the most reactive substrate). In the second assay method, the MetAP reaction is coupled to a prolyl aminopeptidase reaction using Met-Pro-p-nitroanilide as substrate. MetAP-catalyzed cleavage of the N-terminal methionine produces prolyl-p-nitroanilide, which is rapidly hydrolyzed by the prolyl aminopeptidase from Bacillus coagulans to release a chromogenic product, p-nitroaniline. This allows the MetAP reaction to be continuously monitored at 405 nm on a UV-VIS spectrophotometer. The assays have been applied to determine the pH optima and kinetic constants for the E. coli and human MetAPs as well as to screen MetAP inhibitors. These results demonstrate that the current assays are convenient, rapid, and sensitive methods for kinetic studies of MetAPs and effective tools for screening MetAP inhibitors.  相似文献   

19.
In almost all living cells, methionine aminopeptidase (MetAP) co-translationally cleaves the initiator methionine in at least 70% of the newly synthesized polypeptides. MetAPs are typically classified into Type 1 and Type 2. While prokaryotes and archaea contain only either Type 1 or Type 2 MetAPs respectively, eukaryotes contain both types of enzymes. Almost all MetAPs published till date cleave only methionine from the amino terminus of the substrate peptides. Earlier experiments on crude Type 2a MetAP isolated from Pyrococcus furiosus (PfuMetAP2a) cosmid protein library was shown to cleave leucine in addition to methionine. Authors in that study have ruled out the PfuMetAP2a activity against leucine substrates and assumed it to be a background reaction contributed by other contaminating proteases. In the current paper, using the pure recombinant enzyme, we report that indeed activity against leucine is directly carried out by the PfuMetAP2a. In addition, the natural product ovalicin which is a specific covalent inhibitor of Type 2 MetAPs does not show efficient inhibition against the PfuMetAP2a. Bioinformatic analysis suggested that a glycine in eukaryotic MetAP2s (G222 in human MetAP2b) and asparagine (N53 in PfuMetAP2a) in archaeal MetAP2s positioned at the analogous position. N53 side chain forms a hydrogen bond with a conserved histidine (H62) at the entrance of the active site and alters its orientation to accommodate the ovalicin. This slight orientational difference of the H62, reduces affinity of the ovalicin by 300,000-fold when compared with the HsMetAP2b inhibition. This difference in the activity is partly reduced in the case of N53G mutation of the PfuMetAP2a.  相似文献   

20.
The removal of N-terminal translation initiator Met by methionine aminopeptidase (MetAP) is often crucial for the function and stability of proteins. On the basis of crystal structure and sequence alignment of MetAPs, we have engineered Escherichia coli MetAP by the mutation of three residues, Y168G, M206T, Q233G, in the substrate-binding pocket. Our engineered MetAPs are able to remove the Met from bulky or acidic penultimate residues, such as Met, His, Asp, Asn, Glu, Gln, Leu, Ile, Tyr, and Trp, as well as from small residues. The penultimate residue, the second residue after Met, was further removed if the antepenultimate residue, the third residue after Met, was small. By the coexpression of engineered MetAP in E. coli through the same or a separate vector, we have successfully produced recombinant proteins possessing an innate N terminus, such as onconase, an antitumor ribonuclease from the frog Rana pipiens. The N-terminal pyroglutamate of recombinant onconase is critical for its structural integrity, catalytic activity, and cyto-toxicity. On the basis of N-terminal sequence information in the protein database, 85%-90% of recombinant proteins should be produced in authentic form by our engineered MetAPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号