首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male rats were made deficient in essential fatty acids by feeding them a fat-free diet supplemented with 4% tripalmitin for 8-12 wk from the time of weaning. After feeding 0.5 ml of [(14)C]triolein or [(3)H]oleic acid, 72-hr stool recoveries of radioactivity were significantly greater in deficient rats than in chow-fed controls. Essential fatty acid deficiency did not reduce the absorptive capacities for triolein or for a medium-chain fat, trioctanoin, measured after 3 and 2 hr of maximal-rate duodenal infusion. In everted jejunal slices from essential fatty acid-deficient rats, uptake of micellar [(14)C]oleic acid at 0-1 degrees C was similar to that of controls, but the rate of incorporation of fatty acid into triglyceride after rewarming to 37 degrees C was significantly reduced. The specific activities of the microsomal esterifying enzymes, acyl CoA:monoglyceride acyltransferase and fatty acid CoA ligase in jejunal mucosa were 30% lower in essential fatty acid-deficient rats. However, the total microsomal enzyme activity adjusted to constant weight did not differ significantly in deficient rats compared with controls. After intraduodenal perfusion of triolein, accumulation of lipid in the intestinal wall was increased in the deficient rats. Because over 90% of the absorbed mucosal lipid was present as triglyceride, essential fatty acid deficiency appears to affect the synthesis or release of chylomicron lipid from the intestine. Analysis of regions of intestine showed that this delay in transport was most marked in the midportion of the small intestine.  相似文献   

2.
We investigated the role of caveolae in uptake and intracellular trafficking of long chain fatty acids (LCFA) in HepG2 human hepatoma cells. The uptake of [(3)H]oleic acid and [(3)H]stearic acid into HepG2 cells was measured by radioactive assays and internalization of the non-metabolizable fluorescent fatty acid 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] (12-NBD) stearate into single HepG2 cells was semi-quantitatively assessed by laser scanning microscopy. The initial rate of [(3)H]oleic acid uptake (V(0)) in HepG2 cells exhibited saturable transport kinetics with increasing concentrations of free oleic acid (V(max) 854 +/- 46 pmol mg protein(-1) min(-1), K(m) 100 +/- 14 nmol/l). While inhibition of clathrin coated pits did not influence LCFA uptake in HepG2, inhibition of caveolae formation by filipin III, cyclodextrin, and caveolin-1 antisense oligonucleotides resulted in reduction of [(3)H]oleic acid uptake by 54%, 45%, and 23%, respectively. Furthermore, filipin III inhibited the uptake of [(3)H]stearic acid and its fluorescent derivative 12-NBD stearate by 44% and 50%, respectively. Transfection studies with alpha-caveolin-1/cyanofluorescent protein chimeras showed significant colocalization of caveolae and internalized 12-NBD stearate. In conclusion, these data suggest a significant role for caveolae mediated uptake and intracellular trafficking of LCFA in HepG2 cells.  相似文献   

3.
Two-minute exposures to exogenous [14C]palmitic, [14C]oleic, or [14C]lauric acid differentially labeled the lipids of Dunaliella salina microsomes and chloroplasts. Changes in fatty acid desaturation and intracellular movement during a subsequent 16-h incubation in nonradioactive medium indicated a slow transfer of lipids into the chloroplast from other organelles. Since Dunaliella lacks the massive traffic of microsomally produced glycerolipids into chloroplast galactolipids that dominates chloroplast-microsome lipid relations in most plant cells, it affords a sensitive system for studying more subtle intracellular lipid fluxes. Lowering the culture temperature from 30 to 12 degrees C was more inhibitory toward glycerolipid biosynthesis in chloroplasts than in microsomes. The ability of Dunaliella chloroplasts to utilize microsomal lipids may be essential for their systematic acclimation to low temperature.  相似文献   

4.
Using the experimental model of the everted sac prepared from rat jejuna, kinetic studies on [14C]oleic acid uptake from bile salt micelles were conducted in the presence and absence of phosphatidylcholine. The concentration of oleic acid was varied between 0.625 and 5 mM. At every level of fatty acid concentration studied the addition of 2 mM phosphatidylcholine produced a significant inhibition of fatty acid uptake. It was further noted that the intact phospholipid molecule was required for this effect as lysophosphatidylcholine produced little, if any, inhibition of [14C]oleic acid uptake. The effect of varying the concentration of phosphatidylcholine on fatty acid uptake was also studied. The degree of inhibition was noted to be correlated grossly with media concentrations of this phospholipid although the decrease of fatty acid uptake was not strictly proportional to concentration of this material in the medium. Studies were also performed analyzing in vitro absorption of [14C]oleic acid and [3H]cholesterol simultaneously from mixed micelles composed of sodium taurocholate, oleic acid, monoolein and cholesterol. Control medium contained no phospholipid while experimental medium contained either diester or diether phosphatidylcholine, 2 mM. Both types of phosphatidylcholine caused significant inhibition of fatty acid and cholesterol uptake. In vivo absorption studies were also performed using the isolated jejunal segment technique. A mixed micellar solution containing [3H]cholesterol and [14C]oleic acid was used as the test dose. Phospholipid in the test dose for controls was supplied as lysophosphatidylcholine and for experimentals it was in the form of diether phosphatidylcholine. Significantly less radioactively labeled cholesterol and fatty acid was absorbed by experimentals as compared to controls over a 10-min period. It is concluded that the intact molecule of phosphatidylcholine inhibits intestinal uptake of cholesterol and fatty acid from mixed micellar solutions under both in vitro and in vivo conditions.  相似文献   

5.
Studies were performed on methods of storage of rat jejunal tissue that would preserve activities of the lipid reesterifying enzymes, acyl CoA:monoglyceride acyltransferase and fatty acid CoA ligase. Storage at -80 degrees C of microsomes prepared from jejunal mucosa or storage of lyophilized microsomes at -20 degrees C was shown to preserve acyl CoA:monoglyceride acyltransferase very well for a matter of weeks. Preservation of fatty acid CoA ligase activity was adequate with either method, but results were not as good as for the transacylase enzyme.  相似文献   

6.
The interaction between long-chain and medium-chain lipids during intestinal absorption was examined using several model systems. A decrease in steady-state triolein (LCT) output in thoracic duct lymph after addition of trioctanoin (MCT) to the duodenal infusion confirmed previous studies in unanesthetized rats which demonstrated inhibition of steady-state LCT uptake from the small intestinal lumen by MCT. In slices of everted rat jejunum octanoic acid reduced incorporation into triglyceride and initial uptake of (14)C-labeled oleic acid from micellar solutions. Inhibition of uptake did not occur at 0 degrees C, when triglyceride synthesis was blocked. Incubation of slices at low pH (5.8) or in the presence of dimethyl sulfoxide also reduced uptake of oleic acid and its incorporation into triglyceride. However, when everted sacs of jejunum were similarly incubated, octanoate, dimethyl sulfoxide, or low pH caused no inhibition of oleic acid uptake or esterification. The results indicate that the significance of kinetic data describing intestinal fatty acid absorption which were obtained from experiments conducted in vitro is highly questionable, and that suitable models for in vivo uptake kinetics have yet to be developed. However, analysis of the in vitro kinetic data suggests that the intestinal mucosal membrane does not function as a simple lipid interface with respect to fatty acid absorption.  相似文献   

7.
Isolated rat hepatocytes rapidly utilized [(14)C]palmitate and, in particular, synthesized large amounts of neutral lipids from palmitate. Incorporation into cellular lipids occurred at a linear rate proportional to the medium concentration of fatty acids. Oxidation of [(14)C]palmitate to CO(2) increased with time and was much slower than palmitate esterification. Since [(14)C]acetate and [(14)C]glucose were oxidized to CO(2) at a linear rate, the lag in fatty acid oxidation to CO(2) did not involve enzymatic steps subsequent to acetate formation. The relative contribution of palmitate to esterification and to CO(2) formation depended upon the molar ratio of palmitate to albumin (v) and the length of incubation. Dibutyryl cyclic AMP (1 mM) reduced the oxidation of palmitate and acetate to CO(2) by about 50 and 90%, respectively, but did not alter palmitate esterification. However, equivalent concentrations of sodium butyrate produced similar decreases in CO(2) formation. Dibutyryl cyclic AMP (1 mM) also stimulated palmitate oxidation to water-soluble products, principally ketone bodies, by 50-100%. Sodium butyrate exerted no effect, while monobutyryl cyclic AMP and cyclic AMP both stimulated this pathway significantly. These results indicate that both v and dibutyryl cyclic AMP regulate the metabolism of fatty acids by isolated hepatocytes and suggest that hormonal stimulation of adenyl cyclase controls hepatic lipid metabolism.  相似文献   

8.
Apolipoprotein E (apoE) is an important determinant for the uptake of triglyceride-rich lipoproteins and emulsions by the liver, but the intracellular pathway of apoE following particle internalization is poorly defined. In the present study, we investigated whether retroendocytosis is a unique feature of apoE as compared with apoB by studying the intracellular fate of very low density lipoprotein-sized apoE-containing triglyceride-rich emulsion particles and LDL after LDLr-mediated uptake. Incubation of HepG2 cells with [(3)H]cholesteryl oleate-labeled particles at 37 degrees C led to a rapid release of [(3)H]cholesterol within 30 min for both LDL and emulsion particles. In contrast, emulsion-derived (125)I-apoE was more resistant to degradation (>/=120 min) than LDL-derived (125)I-apoB (30 min). Incubation at 18 degrees C, which allows endosomal uptake but prevents lysosomal degradation, with subsequent incubation at 37 degrees C resulted in a time-dependent release of intact apoE from the cells (up to 14% of the endocytosed apoE at 4 h). The release of apoE was accelerated by the presence of protein-free emulsion (20%) or high density lipoprotein (26%). Retroendocytosis of intact particles could be excluded since little intact [(3)H]cholesteryl oleate was released (<3%). In contrast, the degradation of LDL was complete with virtually no secretion of intact apoB into the medium. The intracellular stability of apoE was also demonstrated after hepatic uptake in C57Bl/6 mice. Intravenous injection of (125)I-apoE and [(3)H]cholesteryl oleate-labeled emulsions resulted in efficient LDLr-mediated uptake of both components by the liver (45-50% of the injected dose after 20 min). At 1 h after injection, only 15-20% of the hepatic (125)I-apoE was degraded, whereas 75% of the [(3)H]cholesteryl oleate was hydrolyzed. From these data we conclude that following LDLr-mediated internalization by liver cells, apoE can escape degradation and can be resecreted. This sequence of events may allow apoE to participate in its hypothesized intracellular functions such as mediator of the post-lysosomal trafficking of lipids and very low density lipoprotein assembly.  相似文献   

9.
Developing soybean (cv. Dare) cotyledons harvested at 30 days after flowering were pulse-labeled with [1-(14)C]oleoyl-CoA. The metabolic interrelation of radiolabeled unsaturated fatty acids between the major glycerolipid classes was determined at various time intervals. At chase time zero, [(14)C]oleic acid accounted for 99.2% of the total glycerolipid radioactivity, and phospholipids contained 92% of the total incorporated radioactivity. With time, phospholipids were metabolized in triacylglycerol biosynthesis and radioactivity was detected in polyunsaturated fatty acids. The hypothesis that phospholipids were metabolic intermediates in polyunsaturated fatty acid biosynthesis was tested by comparing the theoretical and the actual amount of radiolabeled oleic acid that was associated with triacylglycerol as a function of time. The radioactive oleic acid found in triacylglycerol at various intervals was derived from phospholipids via a diacylglycerol intermediate. Assuming no phospholipid desaturation, the potential or theoretical amounts of [(14)C]oleic acid that could be transferred to triacylglycerol from phospholipids was defined by a system of differential equations. The results demonstrated that the decline in [(14)C]oleic acid from phospholipid after long chase intervals was equal to the total amount of radioactive unsaturated fatty acids found in neutral lipids. The difference between the theoretical and actual amounts of [(14)C]oleic acid present in triacylglycerol after long time intervals was equal to the amount of radioactivity present in polyunsaturated fatty acids. Based upon those findings in soybeans, the desaturation of oleic acid associated with phospholipids was highly probable.  相似文献   

10.
For the investigation of the mechanism responsible for the hypotriglyceridemic effect of NK-104, a new synthetic inhibitor of HMG-CoA reductase, the rate-limiting enzyme for cholesterol synthesis, isolated rat liver was perfused with or without NK-104 in the presence of exogenous [1-(14)C]oleic acid substrate. Addition of NK-104 tended to increase the ketone body production while it caused a significant decrease in the secretion rate of triglyceride by the perfused liver without affecting uptake of exogenous [1-(14)C]oleic acid. The inhibitor also significantly decreased hepatic triglyceride concentration. The altered triglyceride secretion was accompanied by a concomitant decreased incorporation of exogenous [1-(14)C]oleate into triglyceride. The conversion of exogenous [1-(14)C]oleic acid substrate indicated an inverse relationship between the pathways of oxidation and esterification. No effect of NK-104 on hepatic secretion of cholesterol was observed. These results suggest that NK-104 exerts its hypotriglyceridemic action, primarily by diverting the exogenous free fatty acid to the pathways of oxidation at the expense of esterification.  相似文献   

11.
Uptake of long-chain fatty acids by short-term cultured hepatocytes was studied. Rat hepatocytes, which were cultured for 16 h on plastic dishes (3.6 X 10(6) cells/dish), were incubated with [3H]oleate in the presence of various concentrations of bovine serum albumin as a function of the concentration of unbound [3H]oleate in the medium. At 37 degrees C initial uptake velocity (V0) was saturable (Km = 9 X 10(-8) M; Vmax = 835 pmol/min per mg protein). V0 was temperature dependent with an optimum at 37 degrees C and markedly reduced at 4 degrees C and 70 degrees C. To evaluate the biologic significance of a previously isolated rat liver plasma membrane fatty acid-binding protein as putative carrier protein in the hepatocellular uptake of fatty acids, cultured hepatocytes were treated with a monospecific rabbit antibody (IgG-fraction) to this membrane protein or the IgG-fraction of the pre-immune serum as controls. Uptake kinetics of [3H]oleate in antibody pretreated short-term cultured hepatocytes revealed a depression of Vmax by 70%, while Km was only reduced by 16% compared to controls, indicating a predominant non-competitive type of inhibition. V0 of a variety of long-chain fatty acids (oleic acid, arachidonic acid, palmitic acid, stearic acid) was reduced by 56-69%, while V0 of [35S]sulfobromophthalein, [3H]cholic acid and [14C]taurocholic acid remained unaltered. These data support the concept that in the system of cultured hepatocytes, uptake of long-chain fatty acids is mediated by the rat liver plasma membrane fatty acid-binding protein.  相似文献   

12.
Biosynthesis of lipids was investigated in growing 293 cells stably expressing fatty acid (FA) transport protein 1 (FATP1), a bifunctional polypeptide with FA transport as well as fatty acyl-CoA synthetase activity. In short-term (30 s) incubations, FA uptake was increased in FATP1 expressing cells (C8 cells) compared with the vector (as determined by BODIPY 3823 staining and radioactive FA uptake). In long-term (4 h) incubations, incorporation of [(14)C]acetate, [3H]oleic acid, or [(14)C]lignoceric acid into 1,2,3-triacyl-sn-glycerol (TG) was elevated in C8 cells compared with vector, whereas incorporation of radiolabel into glycerophospholipids was unaltered. The increase in TG biosynthesis correlated with an increase in 1,2-diacyl-sn-glycerol acyltransferase activity in C8 cells compared with vector. In contrast, incorporation of [(14)C]acetate into sphingomyelin (SM) and cholesterol, and [3H]oleic acid or [(14)C]lignoceric acid into SM was reduced due to a reduction in de novo biosynthesis of these lipids in C8 cells compared with vector. The results indicate that exogenously supplied FAs, and their subsequently produced acyl-CoAs, are preferentially channeled by an FATP1 linked mechanism into the TG biosynthetic pathway and that such internalized lipids down-regulate de novo SM and cholesterol metabolism in actively growing 293 cells.  相似文献   

13.
BACKGROUND: CD14 is considered to be the major endotoxin (lipopolysaccharide [LPS]) binding molecule on human monocytes. It initiates cellular response, but its role in the clearance of LPS is not well understood. Under conditions that ensure totally CD14-dependent LPS binding on human monocytes, the internalization mechanisms of LPS and CD14 were studied. METHODS: The uptake and intracellular distribution of fluorescein isothiocyanate (FITC)-LPS and CD14 was determined by flow cytometry, trypan blue quenching, and confocal fluorescence microscopy. Incubation of surface-biotinylated cells with LPS at 37 degrees C or 4 degrees C and subsequent subfractionation was used to further characterize CD14 internalization. The amount of the intracellular CD14 was estimated by CD14 enzyme-linked immunosorbent assay (ELISA). RESULTS: The internalization rate of 10 ng/ml FITC-LPS with 1% human serum was 1% of bound endotoxin per minute, whereas CD14 expression did not decrease at the same time surface. We proved the presence of an intracellular CD14 pool (2.68 x 10(6) molecules per unstimulated monocyte) and could show that internalized FITC-LPS molecules can be found in different intracellular compartments than CD14. Subfractionation of LPS-treated biotinylated monocytes showed no change in biotinylated CD14 in the membrane fraction independently of the incubation temperature (37 degrees C or at 4 degrees C) used, indicating that these CD14 molecules were not taken up by an active process. CONCLUSIONS: These data indicate the presence of a large intracellular CD14 pool in monocytes with a yet unknown function, and suggest that LPS and CD14 molecules can be internalized independently after association on the cell surface.  相似文献   

14.
Non-enzymatic heme formation from equimolar amounts of porphyrin and iron was investigated. When mesoporphyrin IX and iron citrate were incubated with oleic acid and dithiothreitol at 37 degrees C in vacuo, mesoheme was formed in a high yield. When protoporphyrin IX and deuteroporphyrin IX were used, protoheme and deuteroheme were formed, respectively. Cysteine or 2-mercaptoethanol instead of dithiothreitol also resulted in the formation of heme. Linoleic acid was as effective as oleic acid, but at 37 degrees C, saturated fatty acids and phospholipids gave low yields. When incubation was at 70 degrees C saturated fatty acids as well as unsaturated fatty acids produced a large amount of heme. The optimum pH was 8.8. By increasing the concentration of Triton X-100 to 0.1%, heme formation decreased, and at concentrations above this level, completely disappeared. The conditions of non-enzymatic heme reaction presented here seem to be useful in elucidation of the mechanism of metalloporphyrin formation.  相似文献   

15.
Differences between the influences of phorbol esters (such as 4 beta-12-O-tetradecanoylphorbol 13-acetate) and of fatty acids (such as oleic acid) on the synthesis and turnover of phosphatidylcholine (PtdCho) and other phospholipids have been studied in glioma (C6), neuroblastoma (N1E-115), and hybrid (NG108-15) cells in culture using [methyl-3H]choline, [32P]Pi, [1,2-14C]ethanolamine, or 1-14C-labeled fatty acids as lipid precursors. 100-500 microM oleic acid stimulated PtdCho synthesis 3- to 5-fold in all three cell lines, but had little influence on chase of choline label following a 24-h pulse. Phorbol ester (50-200 nM) stimulated PtdCho synthesis 1.5- to 3-fold in C6 cells, was without effect in N1E-115 cells, and had intermediate effects on NG108-15 cells. Phorbol ester stimulated both uptake of extracellular choline and synthesis of PtdCho, whereas fatty acid stimulated only synthesis. Release of radioactivity from 24-h pulse-labeled PtdCho to the medium was enhanced by phorbol ester in C6 cells. Incorporation of [32P]Pi, primarily into PtdCho, was stimulated, whereas utilization of [1,2-14C]ethanolamine or 1-14C-fatty acid was little altered by phorbol ester. C6 cells "down-regulated" with phorbol ester lost the stimulatory response of subsequent treatment with phorbol esters on PtdCho synthesis, but the response to fatty acid was enhanced. Fatty acid had little influence on the relative binding of phorbol ester or "translocation" of phorbol ester binding sites. Accordingly, metabolism of phospholipids in these cultured cells of neural origin is markedly influenced by cell type, phospholipid class, condition of incubation medium, and nature of stimulator. Phorbol esters and fatty acids appear to enhance phospholipid synthesis and turnover by distinct intracellular mechanisms.  相似文献   

16.
Abnormalities in energy metabolism may play an important role in the development of hypertensive heart failure. However, the transition from compensated hypertrophy to heart failure is not fully understood in terms of energy metabolism. In Dahl salt-sensitive (DS) and salt-resistant (DR) rats, myocardial fatty acid and glucose uptake values were determined using (131)I- or (125)I-labeled 9-methylpentadecanoic acid ((131)I- or (125)I-9MPA), and [(14)C]deoxyglucose ([(14)C]DG), fatty acid beta-oxidation was identified using thin-layer chromatography, and insulin-stimulated glucose-uptake was observed using a euglycemic hyperinsulinemic glucose clamp. Six-week-old rats were fed a diet that contained 8% NaCl, which resulted in development of compensated hypertrophy in DS rats at 12 wk of age and ultimately led to heart failure by 18 wk of age. Uptake of [(14)C]DG increased markedly with age in the DS rats, whereas (131)I-9MPA uptake was marginally but significantly increased only in animals aged 12 wk. The ratio of (125)I-9MPA beta-oxidation metabolites to total uptake in the DS rats was significantly lower (P < 0.05) at 12 (37%) and 18 (34%) wk compared with at 6 (45%) wk. Insulin increased [(14)C]DG uptake more than twofold in the DS rats at 6 wk, although this increase was markedly attenuated at 12 and 18 wk (11 and 8%, respectively). Our data suggest that in a hypertrophied heart before heart failure, fatty acid oxidation is impaired and the capacity to increase glucose uptake during insulin stimulation is markedly reduced. These changes in both glucose and fatty acid metabolism that occur in association with myocardial hypertrophy may have a pathogenic role in the subsequent development of heart failure.  相似文献   

17.
1. Rats previously starved for 24hr. were separately given by intraduodenal injections 0.5ml. of a dispersion containing 10mg. of sodium taurocholate, with 50mg. of glycerol 1,3-dioleate 2[1-(14)C]-palmitate, glycerol 1,2-dioleate 3[1-(14)C]-palmitate, a mixture of [1-(14)C]palmitic acid and triolein, or a mixture of [1-(14)C]-palmitic acid and oleic acid. 2. At the end of 30min., the net amounts, and the radioactivity, of the neutral-lipid components recovered from the intestinal lumen and mucosa, and the position of the labelled palmitic acid in the mucosal triglycerides, were determined. 3. When glycerol 1,3-dioleate 2[1-(14)C]-palmitate was administered, most of the labelled acid was retained in the di- and monoglycerides of the lumen; the triglycerides were the major components containing the radioactivity in the mucosa and 75-80% of the labelled acid was located at the beta-position of these triglycerides. 4. When glycerol 1,2-dioleate 3[1-(14)C]-palmitate was administered, the labelled acid was readily split off in the lumen and virtually no radioactivity could be traced in the monoglyceride fraction; in the intestinal mucosa, triglycerides were again the chief components containing most of the radioactivity, and 80-85% of the labelled acid was esterified at the outer positions of the glycerol. 5. When [1-(14)C]palmitic acid mixed with triolein was administered, the concentrations of free fatty acids increased markedly in the intestinal lumen and mucosa, and 80-88% of the radioactivity of the mucosal triglycerides was located at the outer positions of the glycerol. 6. When [1-(14)C]palmitic acid mixed with oleic acid was administered, the labelled acid accumulated in the lumen as well as in the cell, and it was randomly incorporated into all three positions of the mucosal triglycerides.  相似文献   

18.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

19.
The stages of uptake and incorporation of micellar palmitic acid by hamster proximal intestinal mucosa were investigated by incubation of everted sacs at 4 degrees C and 37 degrees C for 2, 5, 10, and 15 min in a micellar solution (10 micro moles of [1-(14)C]palmitic acid, 10 micro moles of monoolein, and 100 micro moles of sodium taurodeoxycholate) and subsequent serial rinsing of the sacs in ice-cold solutions as follows: one 20-sec rinse in unlabeled micellar solution, five 1-min rinses in Krebs-Ringer buffer (0.15 m, pH 6.3), and ten 2-min rinses in 2.5% albumin solution. The fatty acid-solubilizing capacity of all the rinsing solutions was always in excess of the amounts of radioactive palmitic acid released during each rinse. Radioactivity was determined in the tissue homogenates, rinsing solutions, and serosal fluids. The results indicate that a significant proportion of radioactive palmitic acid taken up by the sacs during the short incubation was released into the rinsing solutions. Rinsing in Krebs-Ringer buffer resulted in release of 15.5 +/- 2.4% of the labeled fatty acid, and this fraction was independent of the temperature of incubation. In contrast, the amounts of palmitic acid released in albumin were significantly greater and were markedly dependent on the temperature of incubation; a total of 48.6 +/- 7.0% and 26.3 +/- 5.1% was released from sacs incubated at 4 degrees C and 37 degrees C, respectively. While the proportion of radioactive palmitic acid in the free fatty acid fraction of the tissue after the rinsing sequence remained reasonably constant regardless of the temperature and duration of incubation, the radioactivity of the esterified palmitic acid in the tissue was much greater in the sacs incubated at 37 degrees C and tended to increase linearly up to 10 min of incubation. A highly significant inverse relationship was found between the fraction of radioactive palmitic acid released by rinsing in albumin and the fraction of the label in the tissue esterified fatty acids. The results suggest that the initial uptake of micellar fatty acid by intestinal mucosa may involve reversible binding to superficial sites with at least two strengths of binding: a weak, temperature-independent binding which could be easily dissociated by rinsing in Krebs-Ringer buffer, and a stronger, temperature-dependent binding which could be dissociated by rinsing in albumin, but not in Krebs-Ringer buffer. Analogous binding of micellar palmitic acid occurred in a brush border preparation of proximal intestine which was devoid of any fatty acid esterifying activity. This suggested that the reversible binding of fatty acid by the intestinal mucosa may be a property of its superficial components, namely the glycocalyx or microvillous membranes, and that it may be independent of the esterifying capacity of the tissue.  相似文献   

20.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号