首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arabidopsis SUC5 protein represents a classical sucrose/H+ symporter. Functional analyses previously revealed that SUC5 also transports biotin, an essential co‐factor for fatty acid synthesis. However, evidence for a dual role in transport of the structurally unrelated compounds sucrose and biotin in plants was lacking. Here we show that SUC5 localizes to the plasma membrane, and that the SUC5 gene is expressed in developing embryos, confirming the role of the SUC5 protein as substrate carrier across apoplastic barriers in seeds. We show that transport of biotin but not of sucrose across these barriers is impaired in suc5 mutant embryos. In addition, we show that SUC5 is essential for the delivery of biotin into the embryo of biotin biosynthesis‐defective mutants (bio1 and bio2). We compared embryo and seedling development as well as triacylglycerol accumulation and fatty acid composition in seeds of single mutants (suc5, bio1 or bio2), double mutants (suc5 bio1 and suc5 bio2) and wild‐type plants. Although suc5 mutants were like the wild‐type, bio1 and bio2 mutants showed developmental defects and reduced triacylglycerol contents. In suc5 bio1 and suc5 bio2 double mutants, developmental defects were severely increased and the triacylglycerol content was reduced to a greater extent in comparison to the single mutants. Supplementation with externally applied biotin helped to reduce symptoms in both single and double mutants, but the efficacy of supplementation was significantly lower in double than in single mutants, showing that transport of biotin into the embryo is lower in the absence of SUC5.  相似文献   

2.
Mitsuya S  Taniguchi M  Miyake H  Takabe T 《Planta》2005,222(6):1001-1009
For plant salt tolerance, it is important to regulate the uptake and accumulation of Na+ ions. The yeast pmp3 mutant which lacks PMP3 gene accumulates excess Na+ ions in the cell and shows increased Na+ sensitivity. Although the function of PMP3 is not fully understood, it is proposed that PMP3 contributes to the restriction of Na+ uptake and consequently salt tolerance in yeasts. In this paper, we have investigated whether the lack of RCI2A gene, homologous to PMP3 gene, causes a salt sensitive phenotype in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants; and to thereby indicate the physiological role of RCI2A in higher plants. Two T-DNA insertional mutants of RCI2A were identified. Although the growth of rci2a mutants was comparable with that of wild type under normal conditions, high NaCl treatment caused increased accumulation of Na+ and more reduction of the growth of roots and shoots of rci2a mutants than that of wild type. Undifferentiated callus cultures regenerated from rci2a mutants also accumulated more Na+ than that from wild type under high NaCl treatment. Furthermore, when wild-type and rci2a plants were treated with NaCl, NaNO3, Na2SO4, KCl, KNO3, K2SO4 or LiCl, the rci2a mutants showed more reduction of shoot growth than wild type. Under treatments of tetramethylammonium chloride, CaCl2, MgCl2, mannitol or sorbitol, the growth reduction was comparable between wild-type and rci2a plants. These results suggested that RCI2A plays a role directly or indirectly for avoiding over-accumulation of excess Na+ and K+ ions in plants, and contributes to salt tolerance.  相似文献   

3.
Two recessive mutations of Paramecium tetraurelia confer sensitivity to potassium: While wild-type cells survive when up to 30 mM KCI is added to their growth medium, mutants cease to grow and die when levels of added KCl reach 20–25 mM. Similar sensitivities are seen to Rb+ and Cs+, but not to Na+. Swimming behavior of mutants is indistinguishable from wild type when place in stimulating solutions containing Na+, K+, or Ba2+. Behavioral adaptation to low levels of K+ also is indistiguishable from wild type. Flame photometry reveals that one mutant is unable to keep out K+ when that ion is at high levels in the medium, while the other mutant readily leaks K+ and Na+ when those ions are at low levels in the medium. Both mutants have markedly lower internal Na+ than does wild type. Problem with K+ permeability account for the sensitivity of the one mutant to elevated external K+, but the basis of sensitivity in the other mutant is unclear. These mutants expand the range of ion regulation mutants in Paramecium and demonstrate that lesions in cellular ion regulation in this organism need not result in changes in swimming behavior.  相似文献   

4.
The roles of K+ uptake and loss in the salinity response of the wild type and the salt-tolerant mutant stl2 of Ceratopteris richardii were studied by measuring Rb+ influx and loss and the effects of Na+, Mg2+, Ca2+ and K+-transport inhibitors. In addition, electrophysiological responses were measured for both K+ and Rb+ and for the effects of Na+ and NH4+ on subsequent K+-induced depolarizations. stl2 had a 26–40% higher uptake rate for Rb+ than the wild type at 0.5–10 mol m?3 RbCl. Similarly, membrane depolarizations induced by both RbCl and KCl were consistently greater in stl2. In the presence of 0–180 mol m?3 NaCl, stl2 maintained a consistently greater Rb+ influx than the wild type. stl2 retained a greater capacity for subsequent KCl-induced depolarization following exposure to NaCl. Five mol m?3 Mg2+ decreased Rb+ uptake in stl2; however, additional Mg2+ up to 40 mol m?3 did not affect Rb+ uptake further. Ca2+ supplementation resulted in a very minor decrease of Rb+ uptake that was similar in the two genotypes. Tetraethylammonium chloride and CsCl gave similar inhibition of Rb+ uptake in both genotypes, but NH4Cl gave substantially greater inhibition in the wild type than in stl2. NH4Cl resulted in a greater membrane depolarization in the wild type and the capacity for subsequent depolarization by KCl was markedly reduced. stl2 exhibited a higher Independent loss of Rb+ than the wild type, but, in the absence of external K+, loss of Rb+ was equivalent in the two genotypes. Since constitutive K+ contents are nearly identical, we conclude that high K+ influx and loss exact a metabolic cost that is reflected in the inhibition of gametophytic growth. Growth inhibition can be alleviated by reduced supplemental K+ or by treatments that slightly reduce K+ influx, such as moderate concentrations of Na+ or Mg2+. We propose that high throughput of K+ allows maintenance of cytosolic K+ under salt stress and that a high uptake rate for K+ results in a reduced capacity for the entrance and accumulation of alternative cations such as Na+ in the cytosol.  相似文献   

5.
Summary Partial revertant has been isolated, with resistance to aminopretin intermediate between wild type and mutant. This phenotype is the result of a mutation at a gene unlinked to the amiA locus. This suppressor mutation (su+) has no phenotypic characteristics by itself except a slow growth. 9 amiA mutants (belonging to 6 sites) are affected by su+ out of the 30 investigated mutants (i.e. 22 sites). The efficiency of suppression is site dependent. Two sites out of 14 mutants belonging to the thymidilate synthetase gene are suppressible. Thymidilate synthetase activity is partially restored by su+. Optochin mutants can also be suppressed. Thus su+ is not gene specific but site specific. Moreover when the str-41 allele conferring resistance to streptomycine is introduced by transformation, the suppression effect is restricted. All these properties are characteristic of an informational suppressor.The t-RNA extracted from the suppressor strain su+ but not the wild type restored the synthesis of coat protein coded by RNA from an amber mutant of bacteriophage f2. Attempts to detect ochre suppression activity gave negative results. It is suggested that the su+ gene is amber specific.Thus su+ can provide insight into the nature of suppressible mutations which should be point mutations. Both low efficiency and high efficiency mutants are affected by su+; this is additional evidence that both categories contain point mutations.  相似文献   

6.
A NH4+ transport-defective mutant and a K+ transport-defective mutant of the cyanobacterium Nostoc muscorum were analysed with regard to percentage survival as a function of CsCl toxicity and Cs+ uptake activity. Neither survival nor Cs+ uptake was affected in either of the two mutants when compared with the wild type. The results indicate that the toxicity of Cs+ is determined at more than one cellular site in this organism.  相似文献   

7.
The roles of Na+ and K+ (Rb+) uptake were further studied in a NaCl-tolerant strain of Ceratopteris richardii containing the stl2 mutation by direct comparison with the wild-type strain. In addition to Na+ tolerance, stl2 also confers tolerance to Mg2+ and sensitivity to K+. In addition to higher K+ (Rb+) uptake at concentrations commonly associated with low-affinity K+ transport, stl2 maintained higher uptake down to 0·1 mol m–3 Rb+. Up to a 25-fold excess of Na+ had little effect in either genotype on K+ (Rb+) uptake at low concentrations, i.e. 0·2 and 0·5 mol m–3 RbCl. Pretreatment with K+ (20 mol m–3) inhibited uptake of K+ (Rb+) in the wild type, whereas concurrent inclusion of K+ inhibited uptake of Rb+ more in stl2. In the absence of K+, Na+ uptake (0·01–60 mol m–3) was nearly identical in the wild type and stl2. K+ inhibited Na+ uptake more effectively in stl2 than the wild type, especially at 60 mol m–3 Na+. Greater inhibition of K+ uptake in stl2 occurred with MgCl2 or TEA (tetraethylammonium chloride) preincubation or with simultaneous inclusion of Al3+ (Al2SO4). The higher effective velocity of K+ uptake at a wide range of concentrations and the enhanced selectivity for K+ and against Na+ contribute to the preservation of higher cytosolic K+ and lower Na+ under salinity stress.  相似文献   

8.
Summary The periplasmic phosphate binding protein is a product of the phoS gene and is an essential component of the phosphate specific transport (PST) system, which mediates Pi uptake in Escherichia coli. The binding of Pi to periplasmic protein(s) and the kinetic parameters of Pi uptake were studied in phoT and pstB mutants of E. coli. These mutants are impaired in Pi uptake but have a periplasmic Pi-binding protein whose Pi-binding acpacity was estimated by the retention kinetics. The Pi-binding activity in two pstB mutants was found to be weaker as compared to phoT9 and the wild type. The K D values for Pi binding to periplasmic protein were determined by equilibrium dialysis. In the pstB mutants the K D value was found to be 9–31 times higher than the values obtained for the wild type and the phoT mutant. The apparent K m values for Pi uptake in one pstB mutant is 14.3 times higher than in the wild type. V max of the mutant is 8.3 times lower that of the wild type. The data indicate that pstB, an essential gene of the PST transport system, is promoting the binding capacity of the Pi-binding protein.Abbreviations AP alkaline phosphatase - Pi inorganic orthophosphate - Km kanamycin  相似文献   

9.
The role of putative Na+/H+ antiporters encoded by nhaS1 (slr1727), nhaS3 (sll0689), nhaS4 (slr1595), and nhaS5 (slr0415) in salt stress response and internal pH regulation of the cyanobacterium Synechocystis PCC 6803 was investigated. For this purpose the mutants (single, double, and triple) impaired in genes coding for Na+/H+ antiporters were constructed using the method of interposon mutagenesis. PCR analyses of DNA demonstrated that mutations in nhaS1, nhaS4, and nhaS5 genes were segregated completely and the mutants contained only inactivated copies of the corresponding genes. Na+/H+ antiporter encoded by nhaS3 was essential for viability of Synechocystis since no completely segregated mutants were obtained. The steady-state intracellular sodium concentration and Na+/H+ antiporter activities were found to be the same in the wild type and all mutants. No differences were found in the growth rates of wild type and mutants during their cultivation in liquid media supplemented with 0.68 M or 0.85 M NaCl as well as in media buffered at pH 7.0, 8.0, or 9.0. The expression of genes coding for Na+/H+ antiporters was studied. No induction of any Na+/H+ antiporter encoding gene expression was found in wild type or single mutant cells grown under high salt or at different pH values. Nevertheless, in cells of double and triple mutants adapted to high salt or alkaline pH some of the remaining Na+/H+ antiporter encoding genes showed induction. These results might indicate that some of Na+/H+ antiporters can functionally replace each other under stress conditions in Synechocystis cells lacking the activity of more than one antiporter.  相似文献   

10.
Summary The phenotype of rotund (rn) null alleles is described, and compared to wild type. The mutants are expressed zygotically and cause position specific defects in certain imaginal discs (antenna, legs, wing, haltere and proboscis) and their corresponding adult derivatives. In the discs, specific folds are absent in rn mutants compared to wild type. Clonal analysis shows that the rn + gene is partially autonomous in its expression in cells destined to form certain distal parts of the adult appendages. The results are consistent with the idea that the rn + gene is required for normal morphogenesis of specific distal parts of the adult appendages.  相似文献   

11.
Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild‐type Arabidopsis thaliana and in T‐DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T‐DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+‐starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+‐sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.  相似文献   

12.
Burhenne N  Tischner R 《Planta》2000,211(3):440-445
 A method is presented to isolate mutants of Chlorella sorokiniana with defects in NO3 metabolism. Three nitrite-reductase (NIR; E.C.1.7.7.1)-deficient mutants were obtained from 500 pinpoint-colony-forming clones. The final screening was performed using NO3 , NO2 or NH+ 4 as N-source. The mutants isolated absorb NO3 with rates close to those measured for the wild type and they excrete NO2 into the medium. The ratio between NO3 uptake and NO2 excretion was 1:1. The sensitivity of NO3 uptake to NH+ 4 was reduced in the mutant strains as it was in the N-starved wild type of Chlorella. Nitrate reductase (NR; EC 1.6.6.1) expression and NR activity were slightly reduced compared to the wild type due to feedback regulation in the mutant strains. No NIR protein was found in the three mutants. However, NIR activity was obtained (50% of the wild-type) for one mutant strain. The NIR-deficient mutants and the already available NR-deficient mutants will be promising tools for investigations of the nitrate assimilation pathway on the molecular level and for studies searching for signaling of C and N metabolism by inorganic N-compounds. Received: 8 October 1999 / Accepted: 25 January 2000  相似文献   

13.
Improving salt tolerance of economically important plants is imperative to cope with the increasing soil salinity in many parts of the world. Mutation breeding has been widely used to improve plant performance under salinity stress. In this study, we have mutagenized Echinochloa crusgalli L. with sodium azide and three selected mutants (designated fows A) with salt tolerant germination. Their vegetative growth was compared to that of the wild type after short-term and long-term salt stress. The germination of the three fows A mutants in the presence of inhibitory concentrations of NaCl, KCL, and mannitol was better than that of the wild type. Early growth of the mutants in the presence of 200 mM NaCl was also better than that of the wild type perhaps due to improved K+ uptake and enhanced accumulation of sugars particularly sucrose at least in two mutants. But the three mutants and the wild type responded similarly to long-term salt stress. The tolerance mechanisms during short-term and long-term salt stress are discussed.  相似文献   

14.
Structural analysis of glucose dehydrogenase from Haloferax mediterranei revealed that the adenosine 2′-phosphate of NADP+ was stabilized by the side chains of Arg207 and Arg208. To investigate the structural determinants for coenzyme specificity, several mutants involving residues Gly206, Arg207 and Arg208 were engineered and kinetically characterized. The single mutants G206D and R207I were less efficient with NADP+ than the wild type, and the double and triple mutants G206D/R207I and G206D/R207I/R208N showed no activity with NADP+.In the single mutant G206D, the relation kcat/KNAD+ was 1.6 times higher than in the wild type, resulting in an enzyme that preferred NAD+ over NADP+. The single mutation was sufficient to modify coenzyme specificity, whereas other dehydrogenases usually required more than one or two mutations to change coenzyme specificity. However, the highest reaction rates were reached with the double mutant G206D/R207I and with coenzyme NAD+, where the kcat was 1.6 times higher than the kcat of the wild-type enzyme with NADP+. However, catalytic efficiency with NAD+ was lower, as the Km value for coenzyme was 77 times higher than the wild type with NADP+.  相似文献   

15.
Electron input from plastocyanin into photosystem I (PSI) is slowed down in the Chlamydomonas reinhardtii mutants affected at the donor side (PsaF or PsaB, lumenal loop j) of PSI. In contrast, electron exit from PSI to ferredoxin is diminished in the PSI acceptor side PsaC mutants K35E and FB1. Although, the electron transfer reactions are diminished to a similar extent in both type of mutants, the PsaC mutants K35E and FB1 are more light‐sensitive than the PsaF‐deficient strain 3bF or the PsaB mutants E613N and W627F. To assess the differential photosensitivity of donor and acceptor side mutants fluorescence transients, gross oxygen evolution and uptake, PSII photo‐inhibition and rate of recovery were measured as well as NADP+ photoreduction. The NADP+ photoreduction measurements indicated that the donor side is limiting the reduction rate. In contrast, measurements of gross oxygen evolution and uptake showed that the reducing side limits linear electron transfer. However, under high light, donor and acceptor side mutations lead to PSII photo‐inhibition and to a diminished rate of PSII recovery, cause lipid peroxidation and result in a decrease in the levels of PSI and PSII. The wild type is not affected under the same conditions. These responses are most pronounced in the PsaC‐K35E and PsaB‐W627F mutants, and they correlate with the light sensitivity of these strains. The correlation between limitation of electron transfer through PSI and the formation of reactive oxygen species as a cause for the light‐sensitivity is discussed.  相似文献   

16.
Summary The ino1 locus of yeast has been demonstrated to be the structural gene for the repressible enzyme, L-myo-inositol-1-phosphate synthase (Donahue and Henry 1981 a). We have screened a large number of allelic representatives of the ino1 locus for the presence of protein which cross reacts with antibody produced in response to purified wild type inositol-1-phosphate synthase. Approximately 50% of all ino1 representatives screened by immunoprecipitation produce a protein of 62,000 molecular weight, identical in size to the wild type enzyme subunit. These mutants (termed crm+) were tested for expression of the 62,000 MW protein under conditions which are repressing for the wild type enzyme (greater than 25 M exogenous inositol). The protein produced by the crm+ mutants, like the active enzyme in wild type yeast, is repressed in the presence of high levels of exogenous inositol. In addition, we have reassessed the interallelic complementation pattern observed among mutants at the ino1 locus. The entire pattern of interallelic complementation is temperature sensitive.  相似文献   

17.
Mutations in the GEF2 gene of the yeast Saccharomyces cerevisiae have pleiotropic effects. The gef2 mutants display a petite phenotype. These cells grow slowly on several different carbon sources utilized exclusively or primarily by respiration. This phenotype is suppressed by adding large amounts of iron to the growth medium. A defect in mitochondrial function may be the cause of the petite phenotype: the rate of oxygen consumption by intact gef2 cells and by mitochondrial fractions isolated from gef2 mutants was reduced 60%–75% relative to wild type. Cytochrome levels were unaffected in gef2 mutants, indicating that heme accumulation is not significantly altered in these strains. The gef2 mutants were also more sensitive than wild type to growth inhibition by several divalent cations including Cu. We found that the cup5 mutation, causing Cu sensitivity, is allelic to gef2 mutations. The GEF2 gene was isolated, sequenced, and found to be identical to VMA3, the gene encoding the vacuolar H +-ATPase proteolipid subunit. These genetic and biochemical analyses demonstrate that the vacuolar H +-ATPase plays a previously unknown role in Cu detoxification, mitochondrial function, and iron metabolism.  相似文献   

18.
A 7.1 kb EcoRI fragment from Azospirillum brasilense, that hybridized with a probe carrying the ntrBC genes from Bradyrhizobium japonicum, was cloned. The nucleotide sequence of a 3.8 kb subfragment was established. This led to the identification of two open reading frames, encoding polypeptides of 401 and 481 amino acids, that were similar to NtrB and NtrC, respectively. A broad host range plasmid containing the putative Azospirillum ntrC gene was shown to restore nitrogen fixation under free-living conditions to a ntrC-Tn5 mutant of Azorhizobium caulinodans. Several Tn5 insertion mutants were isolated in the ntrBC coding region in A. brasilense. These mutants were prototrophic and Nif+. However, their nitrogenase activity was slightly lower than in the wild type and they were unable to grow on nitrate as sole nitrogen source. Under microaerobiosis and in the absence of ammonia, a nifA-lacZ fusion was expressed in the mutants at about 60% of the level in the wild type. In the presence of ammonia, the fusion was similarly expressed (60% of the maximum) both in the wild type and mutants. Addition of ammonia to a nitrogen-fixing culture of ntrBC mutants did not abolish nitrogenase activity, in contrast with the wild type. It thus appears that in Azospirillum the ntrBC genes are not essential for nitrogen fixation, although NtrC controls nifA expression to some extent. They are, however, required for the switch-off of nitrogenase activity.  相似文献   

19.
Summary An active transport system specific for ammonium and methylammonium is decribed in wild type cells of Aspergillus nidulans. This system has a Km of less than 5x10-5 M for ammonium as measured by the uptake of 15NH+ 4 and a Km of 2x10-5 M and apparent Vmax of 11 nanomoles/min/mg dry weight for methylammonium, by the uptake of 14C methylammonium. The system concentrates methylammonium at least 120-fold and is probably regulated by the concentration of internal ammonium.Cells of the mutant strain DER-3 possess a reduced rate of ammonium and methylammonium transport under all conditions tested. DER-3 is a double mutant, one mutation being allelic with meaA8 and designated meaA21, the other is unlinked to meaA and designated mod meaA. The heterozygous diploid DER3/+ has wild type transport, indicating that the mutations are recessive. Cells of the mutant strain amrA1 have impaired transport of ammonium and methylammonium, but only under some conditions. amrA1 is recessive. The possible defects of these mutants are discussed.  相似文献   

20.
Potassium (K+) is essential for plant growth and development, yet the molecular identity of many K+ transporters remains elusive. Here we characterized cation/H+ exchanger (CHX) 14 as a plasma membrane K+ transporter. CHX14 expression was induced by elevated K+ and histochemical analysis of CHX14 promoter::GUS transgenic plants indicated that CHX14 was expressed in xylem parenchyma of root and shoot vascular tissues of seedlings. CHX14 knockout (chx14) and CHX14 overexpression seedlings displayed different growth phenotypes during K+ stress as compared with wild‐type seedlings. Roots of mutant seedlings displayed higher K+ uptake rates than wild‐type roots. CHX14 expression in yeast cells deficient in K+ uptake renders the mutant cells more sensitive to deficiencies of K+ in the medium. CHX14 mediates K+ efflux in yeast cells loaded with high K+. Uptake experiments using 86Rb+ as a tracer for K+ with both yeast and plant mutants demonstrated that CHX14 expression in yeast and in planta mediated low‐affinity K+ efflux. Functional green fluorescent protein (GFP)‐tagged versions of CHX14 were localized to both the yeast and plant plasma membranes. Taken together, we suggest that CHX14 is a plasma membrane K+ efflux transporter involved in K+ homeostasis and K+ recirculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号