首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostate carcinoma LNCaP cells were unique among several human cancer cell lines which include two other prostate cancer cell lines, PC-3 and DU-145, in expressing alpha1,2-L-fucosyltransferase (FT) as an exclusive FT activity. Affinity gel-GDP and Sephacryl S100 HR columns were used for a partial purification of this enzyme from 3.9 x 10(9) LNCaP cells (approximately 200-fold; 40% yield). The K(m) value (2.7 mM) for the LacNAc type 2 acceptor was quite similar to the one reported for the cloned blood group H gene-specified alpha1,2-FT [Chandrasekaran et al. (1996) Biochemistry 35, 8914-8924]. N-Ethylmaleimide was a potent inhibitor (K(i ) 12.5 microM). The enzyme showed four-fold acceptor preference for the LacNAc type 2 unit in comparison to the T-hapten in mucin core 2 structure. Its main features were similar to those of the cloned enzyme: (1) C-6 sulfation of terminal Gal in the LacNAc unit increased the acceptor efficiency, whereas C-6 sialylation abolished acceptor ability; (2) C-6 sulfation of GlcNAc in LacNAc type 2 decreased by 80% the acceptor ability, whereas LacNAc type 1 was unaffected; (3) Lewis x did not serve as an acceptor; (4) the C-4 hydroxyl rather than the C-6 hydroxyl group of the GlcNAc moiety in LacNAc type1 was essential for activity; and (5) the acrylamide copolymer of Galbeta1,3GlcNAcbeta-O-Al was the best acceptor among the acrylamide copolymers. Additionally, highly significant biological features of alpha1,2FT were identified in the present study. The synthesis of Globo H and Lewis b determinants became evident from the fact that Galbeta1,3GalNAcbeta1,3Galalpha-O-Me and Galbeta1,3(Fucalpha1,4)Glc-NAcbeta1,3Galbeta-O-Me served as high-affinity acceptors for this enzyme. Further, D-Fucbeta1,3Gal-NAcbeta1,3Galalpha-O-Me was a very efficient acceptor, indicating that the C-6 hydroxyl group of the terminal Gal moiety in Globo H is not essential for the enzyme activity. Thus, the present study was able to demonstrate three different catalytic roles of LNCaP alpha1,2-FT, namely, the expressions of blood group H, Lewis b from Lewis a, and Globo H.  相似文献   

2.
Human colon carcinoma cell fucosyltransferase (FT) in contrast to the FTs of several human cancer cell lines, utilized GlcNAcbeta1,4GlcNAcbeta-O-Bn as an acceptor, the product being resistant to alpha1,6-L-Fucosidase and its formation being completely inhibited by LacNAc Type 2 acceptors. Further, this enzyme was twofold active towards the asialo agalacto glycopeptide as compared to the parent asialoglycopeptide. Only 60% of the GlcNAc moieties were released from [14C]fucosylated asialo agalacto triantennary glycopeptide by jack bean beta-N-acetylhexosaminidase. These alpha1,3-L-fucosylating activities on multiterminal GlcNAc residues and chitobiose were further examined by characterizing the products arising from fetuin triantennary and bovine IgG diantennary glycopeptides and their exoglycosidase-modified derivatives using lectin affinity chromatography. Utilization of [14C]fucosylated glycopeptides with cloned FTs indicated that Lens culinaris lectin and Aleuria aurantia lectin (AAL) required, respectively, the diantennary backbone and the chitobiose core alpha1,6-fucosyl residue for binding. The outer core alpha1,3- but not the alpha-1,2-fucosyl residues decreased the binding affinity of AAL. The AAL-binding fraction from [14C]fucosylated asialo fetuin, using colon carcinoma cell extract, contained 60% Endo F/PNGaseF resistant chains. Similarly AAL-binding species from [14C]fucosylated TFA-treated bovine IgG using colon carcinoma cell extract showed significant resistance to endo F/PNGaseF. However, no such resistance was found with the corresponding AAL non- and weak-binding species. Thus colon carcinoma cells have the capacity to fucosylate the chitobiose core in glycoproteins, and this alpha1,3-L-fucosylation is apparently responsible for the AAL binding of glycoproteins. A cloned FT VI was found to be very similar to this enzyme in acceptor substrate specificities. The colon cancer cell FT thus exhibits four catalytic roles, i.e., alpha1,3-L-fucosylation of: (a) Galbeta1,4GlcNAcbeta-; (b) multiterminal GlcNAc units in complex type chain; (c) the inner core chitobiose of glycopeptides and glycoproteins; and (d) the nonreducing terminal chiotobiose unit.  相似文献   

3.
Sulfated glycoconjugates regulate biological processes such as cell adhesion and cancer metastasis. We examined the acceptor specificities and kinetic properties of three cloned Gal:3-O-sulfotransferases (Gal3STs) ST-2, ST-3, and ST-4 along with a purified Gal3ST from colon carcinoma LS180 cells. Gal3ST-2 was the dominant Gal3ST in LS180. While the mucin core-2 structure Galbeta1,4GlcNAcbeta1,6(3-O-MeGalbeta1,3)GalNAcalpha-O-Bn (where Bn is benzyl) and the disaccharide Galbeta1,4GlcNAc served as high affinity acceptors for Gal3ST-2 and Gal3ST-3, 3-O-MeGalbeta1,4GlcNAcbeta1,-6(Galbeta1,3)GalNAcalpha-O-Bn and Galbeta1,3GalNAcalpha-O-Al (where Al is allyl) were efficient acceptors for Gal3ST-4. The activities of Gal3ST-2 and Gal3ST-3 could be distinguished with the Globo H precursor (Galbeta1,3GalNAcbeta1,3Galalpha-O-Me) and fetuin triantennary asialoglycopeptide. Gal3ST-2 acted efficiently on the former, while Gal3ST-3 showed preference for the latter. Gal3ST-4 also acted on the Globo H precursor but not the glycopeptide. In support of the specificity, Gal3ST-2 activity toward the Galbeta1,4GlcNAcbeta unit on mucin core-2 as well as the Globo H precursor could be inhibited competitively by Galbeta1,4GlcNAcbeta1,6(3-O-sulfoGalbeta1,3)GalNAcalpha-O-Bn but not 3-O-sulfoGalbeta1,-4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-Bn. Remarkably these sulfotransferases were uniquely specific for sulfated substrates: Gal3ST-3 utilized Galbeta1,4(6-O-sulfo)-GlcNAcbeta-O-Al as acceptor, Gal3ST-2 acted efficiently on Galbeta1,3(6-O-sulfo)GlcNAcbeta-O-Al, and Gal3ST-4 acted efficiently on Galbeta1,3(6-O-sulfo)GalNAcalpha-O-Al. Mg(2+), Mn(2+), and Ca(2+) stimulated the activities of Gal3ST-2, whereas only Mg(2+) augmented Gal3ST-3 activity. Divalent cations did not stimulate Gal3ST-4, although inhibition was noted at high Mn(2+) concentrations. The fine substrate specificities of Gal3STs indicate a distinct physiological role for each enzyme.  相似文献   

4.
Sialyltransferase activity in normal human breast tissue and tumors was investigated with lactose, desialylated fetuin, and bovine submaxillary mucin as the acceptors. While microsomal preparations from the normal tissue showed little or no sialyltransferase activity toward these acceptors, tumors showed elevated enzymic activities. Tween-20 at 0.5% concentrations stimulated sialic acid transfer to all three acceptors. Another nonionic detergent, Triton X-100, stimulated asialo fetuin sialyltransferase activity while inhibiting activity toward asialo BSM and lactose. Interestingly, lysolecithin, a normal cellular constituent which possesses detergent properties also had an effect similar to that of Triton X-100. Thermal denaturation curves of enzymic activity toward asialo BSM, however, resembled those seen with asialo fetuin as the acceptor. Kinetic studies showed that at acceptor concentrations of 500 micrograms each, sialyl transfers to asialo fetuin, asialo BSM, and lactose showed apparent Km values of 50, 60, and 300 microM, respectively. At CMP-sialic acid concentrations of 300 microM, the Km values for the above acceptors were 25, 15, and 5000 microM.  相似文献   

5.
Torii T  Fukuta M  Habuchi O 《Glycobiology》2000,10(2):203-211
We have previously cloned keratan sulfate Gal-6-sulfotransferase (KSGal6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of Gal residue of keratan sulfate. In this study, we examined whether KSGal6ST could transfer sulfate to sialyl N -acetyllactosamine oligosaccharides or fetuin oligo-saccharides. KSGal6ST expressed in COS-7 cells catalyzed transfer of sulfate to NeuAcalpha2-3Galbeta1-4GlcNAc (3'SLN), NeuAcalpha2-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Gl cNAc (SL1L1), NeuAcalpha2-3Galbeta1-4(6-sulfo)GlcNAcbeta1-3(6-sulfo) Galbeta1-4(6-su lfo)GlcNAc (SL2L4), and their desialylated derivatives except for Galbeta1-4GlcNAc, but not to NeuAcalpha2-3Galbeta1-4(Fucalpha1-3)GlcNAc (SLex). When the sulfated product formed from 3'SLN was degraded with neuraminidase and reduced with NaBH(4), the resulting sulfated disaccharide alditol showed the same retention time in SAX-HPLC as that of [(3)H]Gal(6SO(4))beta1-4GlcNAc-ol. KSGal6ST also catalyzed sulfation of fetuin. When the sulfated oligosaccharides released from the sulfated fetuin after sequential digestion with proteinase and neuraminidase were subjected to a reaction sequence of hydrazin-olysis, deaminative cleavage and NaBH(4)reduction, the major product was co-eluted with [(3)H]Gal(6SO(4))beta1-4anhydromannitol in SAX-HPLC. These observations show that KSGal6ST is able to sulfate position 6 of Gal residue of 3'SLN and fetuin oligosaccharides. The relative rates of the sulfation of SL2L4 was much higher than the rate of the sulfation of keratan sulfate. These results suggest that KSGal6ST may function in the sulfation of sialyl N -acetyllactosamine oligosaccharide chains attached to glycoproteins.  相似文献   

6.
The alpha3 fucosyltransferase, FucT-VII, is one of the key glycosyltransferases involved in the biosynthesis of the sialyl Lewis X (sLex) antigen on human leukocytes. The sialyl Lewis X antigen (NeuAcalpha(2-3)Galbeta(1-4)[Fucalpha(1-3)]GlcNAc-R) is an essential component of the recruitment of leukocytes to sites of inflammation, mediating the primary interaction between circulating leukocytes and activated endothelium. In order to characterize the enzymatic properties of the leukocyte alpha3 fucosyltransferase FucT-VII, the enzyme has been expressed in Trichoplusia ni insect cells. The enzyme is capable of synthesizing both sLexand sialyl-dimeric-Lexstructures in vitro , from 3'-sialyl-lacNAc and VIM-2 structures, respectively, with only low levels of fucose transfer observed to neutral or 3'-sulfated acceptors. Studies using fucosylated NeuAcalpha(2-3)-(Galbeta(1- 4)GlcNAc)3-Me acceptors demonstrate that FucT-VII is able to synthesize both di-fucosylated and tri-fucosylated structures from mono- fucosylated precursors, but preferentially fucosylates the distal GlcNAc within a polylactosamine chain. Furthermore, the rate of fucosylation of the internal GlcNAc residues is reduced once fucose has been added to the distal GlcNAc. These results indicate that FucT-VII is capable of generating complex selectin ligands, in vitro , however the order of fucose addition to the lactosamine chain affects the rate of selectin ligand synthesis.   相似文献   

7.
Sialoglycans on the cell surface of human colon cancer (HCC) cells have been implicated in cellular adhesion and metastasis. To clarify the role of N-acetylneuraminic acid (NeuAc) linked alpha2,3 to galactose (Gal) on the surface of HCC cells, we studied the intercellular adhesion of HCC cell lines expressing increasing NeuAcalpha2,3Gal-R. Our model system consisted of the HCC SW48 cell line, which inherently possesses low levels of cell surface alpha2,3 and alpha2,6 sialoglycans. To generate SW48 clonal variants with elevated cell surface NeuAcalpha2,3Gal-R linkages, we transfected the expression vector, pcDNA3, containing either rat liver cDNA encoding Galbeta1,3(4)GlcNAc alpha2,3 sialyltransferase (ST3Gal III) or human placental cDNA encoding Galbeta1,3GalNAc/Galbeta1,4GlcNAc alpha2,3 sialyltransferase (ST3Gal IV) into SW48 cells. Selection of neomycin-resistant clones (600 microgram G418/ml) having a higher percentage of cells expressing NeuAcalpha2,3Gal-R (up to 85% positive Maackia amurenis agglutinin staining compared with 30% for wild type cells) was performed. These ST3Gal III and ST3Gal IV clonal variants demonstrated increased adherence to IL-1beta-activated human umbilical vein endothelial cells (HUVEC) (up to 90% adherent cells compared with 63% for wild type cells). Interestingly, ST3Gal III and ST3Gal IV clonal variants also bound non-activated HUVEC up to 4-fold more effectively than wild type cells. Cell surface NeuAcalpha2,3Gal-R expression within the various SW48 clonal variants correlated directly with increased adhesion to HUVEC (r=0.84). Using HCC HT-29 cells, which express high levels of surface NeuAcalpha2,3Gal-R, addition of synthetic sialyl, sulfo or GalNAc Lewis X structures were found to specifically inhibit intercellular adhesion. At 1.0mM, NeuAcalpha2,3Galbeta1,3(Fucalpha1, 4)GlcNAc-OH and Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,6(SE-6Galbeta1++ +, 3)GalNAcalpha1-O-methyl inhibited HT-29 cell adhesion to IL-1beta-stimulated HUVEC by 100% and 68%, respectively. GalNAcbeta1, 4(Fucalpha1,3)GlcNAcbeta1-O-methyl and GalNAcbeta1,4(Fucalpha1, 3)GlcNAcbeta1,6Manalpha1,6Manbeta1-0-C30H61, however, did not possess inhibitory activity. In conclusion, these studies demonstrated that cell surface NeuAcalpha2,3Gal-R expression is involved in HCC cellular adhesion to HUVEC. These specific carbohydrate-mediated intercellular adhesive events may play an important role in tumor angiogenesis, metastasis and growth control.  相似文献   

8.
Introduction of beta-galactosidase into a trans-sialidase reaction, i.e. sialic acid transfer reaction from a donor substrate (alpha2,3-sialyllactose) to an acceptor substrate (beta-galactosyldisaccharide), could improve the yield of desired sialylated trisaccharide by hydrolyzing lactose, a byproduct from the donor. When trans-sialidase reaction was performed with stoichiometric amounts (2 mM) of alpha2,3-sialyllactose and Galbeta(1,3)GlcNAc, the yield of NeuAcalpha(2,3)Galbeta(1,3)GlcNAc increased from 45% to 75% by the coupling of Escherichia coli beta-galactosidase. Furthermore, by changing the substrate ratio in the coupled reaction, i.e. two-fold excess of alpha2,3-sialyllactose to Galbeta(1,3)GlcNAc, above 95% of yield was achieved based on the amount of Galbeta(1,3)GlcNAc. However, two-fold excess of Galbeta(1,3)GlcNAc to alpha2,3-sialyllactose in this reaction was more desirable for the purification of NeuAcalpha(2,3)Galbeta(1,3)GlcNAc, since complete consumption of alpha2,3-sialyllactose was achieved. Efficiency of the coupled reaction was affected by the specificity of beta-galactosidase for acceptor substrate. When Galbeta(1,6)GlcNAc was used as the acceptor, E. coli beta-galactosidase hydrolyzed Galbeta(1,6)GlcNAc as well as lactose in the coupled reaction, resulting in a significant decrease in the yield of desired sialylated trisaccharide. The conversion yield of the sialylation of Galbeta(1,6)GlcNAc could be improved by employing Bacillus circulans beta-galactosidase.  相似文献   

9.
E-selectin is a cytokine-inducible, calcium-dependent endothelial cell adhesion molecule that plays a critical role in the leucocyte-endothelium interaction during inflammation and is thought to contribute to the metastatic dissemination of tumour cells. Like the other selectins, E-selectin binds to ligands carrying the tetrasaccharide sialyl-Lewis x (NeuAcalpha2,3Galbeta1,4[Fucalpha1, 3]GlcNAc)1 or its isomer sialyl-Lewis a (NeuAcalpha2, 3Galbeta1, 3[Fucalpha1,4]GlcNAc). We examined the effect of expressing the H-type alpha(1,2)-fucosyltransferase or the alpha(2, 6)-sialyltransferase on the synthesis of sialyl-Lewis x by alpha(1, 3)fucosyltransferase. We found that H-type alpha(1, 2)-fucosyltransferase but not alpha(2,6)-sialyltransferase, strongly inhibited sialyl-Lewis x expression and E-selectin adhesion. We assume that H-type alpha(1,2)-fucosyltransferase competes with the endogenous alpha(2,3)-sialyltransferase for the N-acetyllactosamine structures assigned to further serve as acceptors for alpha(1, 3)fucosyltransferase.  相似文献   

10.
While glycosyltransferases are known to display unidirectional enzymatic activity, recent studies suggest that some can also catalyze readily reversible reactions. Recently, we found that mammalian sialyltransferase ST3Gal-II can catalyze the formation of CMP-NeuAc from 5'-CMP in the presence of a donor containing the NeuAcα2,3Galβ1,3GalNAc unit [Chandrasekaran, E. V., et al. (2008) Biochemistry 47, 320-330]. This study shows by using [9-(3)H]- or [(14)C]sialyl mucin core 2 compounds that ST3Gal-II exchanges sialyl residues between CMP-NeuAc and the NeuAcα2,3Galβ1,3GalNAc unit and also radiolabels sialyl residues in gangliosides GD1a and GT1b, but not GM1. Exchange sialylation proceeds with relative ease, which is evident from the following. (a) Radiolabeleling of fetuin was ~2-fold stronger than that of asialo fetuin when CMP- [9-(3)H]NeuAc was generated in situ from 5'-CMP and [9-(3)H]NeuAcα2,3Galβ1,3GalNAcβ1,3Galα-O-Me by ST3Gal-II. (b) ST3Gal-II exchanged radiolabels between [(14)C]sialyl fetuin and [9-(3)H]NeuAcα2,3Galβ1,3GalNAcβ1,3Galα-O-Me by generating CMP-[(14)C]- and -[9-(3)H]NeuAc through 5'-CMP; only 20.3% (14)C and 28.0% (3)H remained with the parent compounds after the sialyl exchange. The [9-(3)H]sialyl-tagged MN glycophorin A, human chorionic gonadotropin β subunit, GlyCAM-1, CD43, fetuin, porcine Cowper's gland mucin, bovine casein macroglycopeptide, human placental glycoproteins, and haptoglobin were analyzed by using Pronase digestion, mild alkaline borohydride treatment, Biogel P6, lectin agarose, and silica gel thin layer chromatography. Sulfated and sialylated O-glycans were found in GlyCAM-1 and human placental glycoproteins. This technique has the potential to serve as an important tool as it provides a natural tag for the chemical and functional characterization of O-glycan-bearing glycoproteins.  相似文献   

11.
Several N-acetyllactosamine (LacNAc) derivatives were tested as acceptors for alpha 1,3-L-fucosyltransferase present in human ovarian cancer sera and ovarian tumor. The enzyme of the soluble fraction of tumor was purified to apparent homogeneity by chromatography on bovine IgG glycopeptide-Sepharose followed by Sephacryl S-200 (M(r) < 67,000). As compared with 2'-methyl LacNAc, 3'-sulfo LacNAc was about 5-fold more sensitive in measuring alpha 1,3-fucosyltransferase in sera (Km, 3'-sulfo LacNAc, 0.12 mM; 2'-methyl LacNAc, 6.67 mM). When ovarian cancer serum was the enzyme source, either the sulfate group or a sialyl moiety at C-3' of LacNAc enhanced the acceptor ability (341 and 242%, respectively), whereas the sulfate group at C-2' or C-6' reduced the activity (22-36%); sulfate at C-6 or fucose at C-2' increased the activity (172 and 253%). The beta-benzylation of the reducing end, in general, increased the activity 2-3-fold. The enzyme of the soluble fraction of tumor exhibited more activity toward 3'-sulfo LacNAc (447%), 2'-fucosyl-LacNAc (436%), and 6-sulfo LacNAc (272%). Very low activity was observed with 3'-sialyl LacNAc (12.4%), 2'-sulfo LacNAc (33%), and 6'-sulfo LacNAc (5%); Fuc alpha 1,2Gal beta 1,3GlcNAc beta-O-p-nitrophenyl (166%), 2-methyl Gal beta 1,3GlcNAc beta-O-benzyl (204%), and 3-sulfo Gal beta 1,3GlcNAc (415%) also acted as acceptors, indicating the coexistence of alpha 1,3- and alpha 1,4-fucosyltransferase. The tumor particulate enzyme behaved entirely different, exhibiting low activity with 3'-sulfo LacNAc (39%) and 2'-fucosyl-LacNAc (148%); 3'-sialyl, 6'-sulfo, 6-sulfo, or 2'-sulfo LacNAc were 3, 43, 53, and 10% active, respectively. Thus, the ovarian cancer serum alpha 1,3-fucosyltransferase acts equally well on H-type 2,3'-sialyl LacNAc and 3'-sulfo LacNAc, but not on H-type 1. The enzyme of soluble tumor fraction acts on H-type 2,3'-sulfo LacNAc as well as H-type 1 but poorly on 3'-sialyl LacNAc. The tumor particulate enzyme acts on H-type 2 but poorly on 3'-sulfo or 3'-sialyl LacNAc and is inactive with H-type 1. When normal serum was examined with synthetic acceptors, > 80% activity was found as alpha 1,2-fucosyltransferase and the rest as alpha 1,3-fucosyltransferase. A screening of 21 ovarian cancer and 3 normal sera (3'-sulfo LacNAc as acceptor) showed 17-572% increase (average increase, 188%) of alpha 1,3-fucosyltransferase activity in cancer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The substrate requirements, linkage specificity, and kinetic mechanism of a pure sialyltransferase from porcine submaxillary glands have been examined. The enzyme transfers sialic acid from the donor nucleotide, CMP-NeuAc, into the sequence NeuAcalpha2 leads to 3Galbeta1 leads to 3GalNAc, which is found in both glycoproteins and gangliosides. It forms only the alpha2 leads to 3 linkage with the disaccharide Gal/beta1 leads to 3GalNAc or antifreeze glycoprotein, which, along with asialoglycoproteins containing the sequence Gal/beta1 leads to 3GalNAcalpha1 leads to O-Thr/Ser, are the best acceptor substrates. Low molecular weight galactosides linked beta1 leads to 3 to glycose residues other than N-acetylgalactosamine are poor acceptors with relatively high Km values, while those in beta1 leads to 4 or beta1 leads to 6 linkages have both high Km and low Vmax. With glycoprotein and ganglioside acceptors this substrate specificity appears to be even more strict, with the sequence Gal/beta1 leads to 3GalNAc serving as the exclusive acceptor. Thus the present enzyme is not responsible either for the sequence, NeuAcalpha2 leads to 3Galbeta1 leads to 4GlcNAc, found in the asparagine-linked chains of certain glycoproteins, or for the synthesis of hematoside, NeuAcalpha2 leads to 3Galbeta1 leads to 4Glcbeta1 leads to 1Cer. Initial rate kinetic studies, with and without inhibitors, suggest that the transferase has an equilibrium random order mechanism.  相似文献   

13.
Sialyltransferases transfer sialic acid from cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) to an acceptor molecule. Trans-sialidases of parasites transfer alpha2,3-linked sialic acid from one molecule to another without the involvement of CMP-NeuAc. Here we report another type of sialylation, termed reverse sialylation, catalyzed by mammalian sialyltransferase ST3Gal-II. This enzyme synthesizes CMP-NeuAc by transferring NeuAc from the NeuAcalpha2,3Galbeta1,3GalNAcalpha unit of O-glycans, 3-sialyl globo unit of glycolipids, and sialylated macromolecules to 5'-CMP. CMP-NeuAc produced in situ is utilized by the same enzyme to sialylate other O-glycans and by other sialyltransferases such as ST6Gal-I and ST6GalNAc-I, forming alpha2,6-sialylated compounds. ST3Gal-II also catalyzed the conversion of 5'-uridine monophosphate (UMP) to UMP-NeuAc, which was found to be an inactive sialyl donor. Reverse sialylation proceeded without the need for free sialic acid, divalent metal ions, or energy. Direct sialylation with CMP-NeuAc as well as the formation of CMP-NeuAc from 5'-CMP had a wide optimum range (pH 5.2-7.2 and 4.8-6.4, respectively), whereas the entire reaction comprising in situ production of CMP-NeuAc and sialylation of acceptor had a sharp optimum at pH 5.6 (activity level 50% at pH 5.2 and 6.8, 25% at pH 4.8 and 7.2). Several properties distinguish forward/conventional versus reverse sialylation: (i) sodium citrate inhibited forward sialylation but not reverse sialylation; (ii) 5'-CDP, a potent forward sialyltransferase inhibitor, did not inhibit the conversion of 5'-CMP to CMP-NeuAc; and (iii) the mucin core 2 compound 3-O-sulfoGalbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-benzyl, an efficient acceptor for ST3Gal-II, inhibited the conversion of 5'-CMP to CMP-NeuAc. A significant level of reverse sialylation activity is noted in human prostate cancer cell lines LNCaP and PC3. Overall, the study demonstrates that the sialyltransferase reaction is readily reversible in the case of ST3Gal-II and can be exploited for the enzymatic synthesis of diverse sialyl products.  相似文献   

14.
15.
The leukocyte adhesion molecule L-selectin mediates lymphocyte homing to secondary lymphoid organs and to certain sites of inflammation. The cognate ligands for L-selectin possess the unusual sulfated tetrasaccharide epitope 6-sulfo sialyl Lewis x (Siaalpha2-->3Galbeta1-->4[Fucalpha1-->3][SO(3)-->6]GlcNAc). Sulfation of GlcNAc within sialyl Lewis x is a crucial modification for L-selectin binding, and thus, the underlying sulfotransferase may be a key modulator of lymphocyte trafficking. Four recently discovered GlcNAc-6-sulfotransferases are the first candidate contributors to the biosynthesis of 6-sulfo sLex in the context of L-selectin ligands. Here we report the in vitro activity of the four GlcNAc-6-sulfotransferases on a panel of synthetic oligosaccharide substrates that comprise structural motifs derived from sialyl Lewis x. Each enzyme preferred a terminal GlcNAc residue, and was impeded by the addition of a beta1,4-linked Gal residue (i.e., terminal LacNAc). Surprisingly, for three of the enzymes, significant activity was observed with sialylated LacNAc, and two of the enzymes were capable of detectable sulfation of GlcNAc in the context of sialyl Lewis x. On the basis of these results, we propose possible pathways for 6-sulfo sialyl Lewis x biosynthesis and suggest that sulfation may be an early committed step.  相似文献   

16.
Many tumor-associated epitopes possess carbohydrate as a key component, and thus changes in the activity of glycosyltransferases could play a role in generating these epitopes. In this report we describe the stable transfection of a human pancreatic adenocarcinoma cell line, Panc1-MUC1, with the cDNA for mucin core 2 GlcNAc-transferase (C2GnT), which creates the core 2 beta-1,6 branch in mucin-type glycans. These cells lack endogenous C2GnT activity but express a recombinant human MUC1 cDNA. C2GnT-transfected clones expressing different levels of C2GnT were characterized using monoclonal antibodies CC49, CSLEX-1, and SM-3, which recognize tumor-associated epitopes. Increased C2GnT expression led to greatly diminished expression of the CC49 epitope, which we identified as NeuAcalpha2,6(Galbeta1,3)GalNAcalpha-Ser/Thr in the Panc1-MUC1 cells. This was accompanied by the emergence of the CSLEX-1 epitope, sialyl Lewis x (NeuAcalpha2,3Galbeta1,4(Fucalpha1,3)GlcNAc-R), an important selectin ligand. Despite this, however, the C2GnT transfectants could not bind to selectins. Increased C2GnT expression also led to masking of the SM-3 peptide epitope, which persisted after the removal of sialic acid, further suggesting greater complexity of the core 2-associated O-glycans on MUC1. The results of this study suggest that C2GnT could play a regulatory role in the expression of certain tumor-associated epitopes.  相似文献   

17.
We and others have previously described the isolation of three human alpha (1,3)fucosyltransferase genes which form the basis of a nascent glycosyltransferase gene family. We now report the molecular cloning and expression of a fourth homologous human alpha (1,3)fucosyltransferase gene. When transfected into mammalian cells, this fucosyltransferase gene is capable of directing expression of the Lewis x (Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc), sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4 [Fuc alpha 1-->3]GlcNAc), and difucosyl sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta 1-->3 Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc) epitopes. The enzyme shares 85% amino acid sequence identity with Fuc-TIII and 89% identity with Fuc-TV but differs substantially in its acceptor substrate requirements. Polymerase chain reaction analyses demonstrate that the gene is syntenic to Fuc-TIII and Fuc-TV on chromosome 19. Southern blot analyses of human genomic DNA demonstrate that these four alpha (1,3)fucosyltransferase genes account for all DNA sequences that cross-hybridize at low stringency with the Fuc-TIII catalytic domain. Using similar methods, a catalytic domain probe from Fuc-TIV identifies a new class of DNA fragments which do not cross-hybridize with the chromosome 19 fucosyltransferase probes. These results extend the molecular definition of a family of human alpha (1,3)fucosyltransferase genes and provide tools for examining fucosyltransferase gene expression.  相似文献   

18.
Two sialyltransferases (EC 2.4.99.-) are extracted with Triton X-100 from human platelets and characterized with asialo 3H-labelled alpha 1-acid glycoprotein, an N-glycosylprotein. Methylation analysis of their specificities indicates that the enzymes transfer selectively sialic acid in a 3 or 6 position to oligosaccharides possessing Gal(beta 1-4)GlcNAc structure. The sialyl alpha 2-3 transferase was separated from the sialyl alpha 2-6 transferase by Ultrogel AcA34 column chromatography. Through affinity chromatography on CDPethanolamine-Sepharose, the two sialyltransferases are partly purified (5- and 20-fold enrichment of their specific activity, respectively, for sialyl alpha 2-3 transferase and alpha 2-6 transferase) and appear to be structurally heterogeneous.  相似文献   

19.
Highly water-soluble, artificial glycopolypeptides with a gamma-polyglutamic acid (gamma-PGA) backbone derived from Bacillus subtilis sp. and multivalent sialyloligosaccharide units have been chemoenzymatically synthesized as potential polymeric inhibitors of infection by bird and human influenza viruses. 5-Trifluoroacetamidopentyl beta-N-acetyllactosaminide and 5-trifluoroacetamidopentyl beta-lactoside were enzymatically synthesized from LacNAc and lactose, respectively, by cellulase-mediated condensation with 5-trifluoroacetamido-1-pentanol. After deacetylation, the resulting 5-aminopentyl beta-LacNAc and beta-lactoside glycosides were coupled to the alpha-carboxyl groups of the gamma-PGA side chains. The artificial glycopolypeptides carrying LacNAc and lactose were further converted to Neu5Acalpha2-(3/6)Galbeta1-4Glcbeta and Neu5Acalpha2-(3/6)Galbeta1-4GlcNAcbeta sialyloligosaccharide units by alpha2,3- and alpha2,6-sialyltransferase, respectively. The interaction of these glycopolypeptides with various influenza virus strains has been investigated by three different methods. Glycopolypeptides carrying Neu5Acalpha2,6LacNAc inhibited hemagglutination mediated by influenza A and B viruses, and their relative binding affinities for hemagglutinin were 10(2)- to 10(4)-fold higher than that of the naturally occurring fetuin control. A glycopolypeptide carrying Neu5Acalpha2,6LacNAc inhibited infection by A/Memphis/1/71 (H3N2) 93 times more strongly than fetuin, as assessed by cytopathic effects on virus-infected MDCK cells. The avian virus [A/duck/Hong kong/4/78 (H5N3)] bound strongly to Neu5Acalpha2,3LacNAc/Lac-carrying glycopolypeptides, whereas the human virus [A/Memphis/1/71 (H3N2)] bound to Neu5Acalpha2,6LacNAc in preference to Neu5Acalpha2,6Lac. Taken together, these results indicate that the binding of viruses to terminal sialic acids is markedly affected by the structure of the asialo portion, in this case either LacNAc or lactose, in the sugar chain of glycopolypeptides.  相似文献   

20.
alpha1,3-Fucosyltransferases (Fuc-Ts) convert N-acetyllactosamine (LN, Galbeta1-4GlcNAc) to Galbeta1-4(Fucalpha1-3)GlcNAc, the Lewis x (CD15, SSEA-1) epitope, which is involved in various recognition phenomena. We describe details of the acceptor specificity of alpha1,3-fucosyltransferase IX (Fuc-TIX). The unconjugated N- and O-glycan analogs LNbeta1-2Man, LNbeta1-6Manalpha1-OMe, LNbeta1-2Manalpha1-3(LNbeta1-2Manalpha1-6)Manbeta1-4GlcNAc, and Galbeta1-3(LNbeta1-6)GalNAc reacted well in vitro with Fuc-TIX present in lysates of appropriately transfected Namalwa cells. Fuc-TIX reacted well with the reducing end LN of GlcNAcbeta1-3'LN (underscored site reacted) and GlcNAcbeta1-3'LNbeta1-3'LN (both LNs reacted), but very poorly with the reducing end LN of LNbeta1-3'LN. However, Fuc-TIX reacted significantly better with the non-reducing end LN as compared to the other LN units in the glycans LNbeta1-3'LN and LNbeta1-3'LNbeta1-3'LNbeta1-3'LN, confirming our previous data on LNbeta1-3'LNbeta1-OR. In contrast, the sialylated glycan Neu5Acalpha2-3'LNbeta1-3'LNbeta1-3'LNbeta1-3'LN was fucosylated preferentially at the two most reducing end LN units. We conclude that Fuc-TIX is a versatile alpha1,3-Fuc-T, that (1) generates distal Lewis x epitopes from many different acceptors, (2) possesses inherent ability for the biosynthesis of internal Lewis x epitopes on growing polylactosamine backbones, and (3) fucosylates the remote internal LN units of alpha2,3-sialylated i-type polylactosamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号