首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TOK1 encodes the channel responsible for the prominent outward K(+) current of the yeast plasma membrane. It can dwell in several impermeable states, including a rapidly transiting, K(+)-electromotive-force-dependent "R" (rectifying) state, a voltage-independent "IB" (interburst) state, and a set of [K(+)](ext) and voltage-dependent "C" (closed) states. Whereas evidence suggests that the C states result from the constriction of an inner gate at the cytosolic end of the pore, R is most likely an intrinsic gating property of the K(+) filter. Here, we present evidence that Tok1's carboxyl-tail domain also plays an intimate role in channel gating by dynamically preventing inner-gate closures. We present an integrated model of TOK1 gating in which the filter gate, inner gate, and carboxyl tail interact to produce the various phenomenological states. Both wild-type and tailless behaviors can be replicated using Monte Carlo computer simulations based on this model.  相似文献   

2.
In the absence of K(+) on both sides of the membrane, delivery of standard activating pulses collapses the Shaker B K(+) conductance. Prolonged depolarizations restore the ability to conduct K(+). It has been proposed that the collapse of the conductance results from the dwelling of the channels in a stable closed (noninactivated) state (, J. Physiol. (Lond.). 499:3-15). Here it is shown that 1) Ba(2+) impedes the collapse of the K(+) conductance, protecting it from both sides of the membrane; 2) external Ba(2+) protection (K(d) = 63 microM at -80 mV) decreases slightly as the holding potential (HP) is made more negative; 3) external Ba(2+) cannot restore the previously collapsed conductance; on the other hand, 4) internal Ba(2+) (and K(+)) protection markedly decreases with hyperpolarized HPs (-80 to -120 mV), and it is not dependent on the pulse potential (0 to +60 mV). Ba(2+) is an effective K(+) substitute, inhibiting the passage of the channels into the stable nonconducting (noninactivated) mode of gating.  相似文献   

3.
Voltage-dependent K(+) channel gating is influenced by the permeating ions. Extracellular K(+) determines the occupation of sites in the channels where the cation interferes with the motion of the gates. When external [K(+)] decreases, some K(+) channels open too briefly to allow the conduction of measurable current. Given that extracellular K(+) is normally low, we have studied if negatively charged amino acids in the extracellular loops of Shaker K(+) channels contribute to increase the local [K(+)]. Surprisingly, neutralization of the charge of most acidic residues has minor effects on gating. However, a glutamate residue (E418) located at the external end of the membrane spanning segment S5 is absolutely required for keeping channels active at the normal external [K(+)]. E418 is conserved in all families of voltage-dependent K(+) channels. Although the channel mutant E418Q has kinetic properties resembling those produced by removal of K(+) from the pore, it seems that E418 is not simply concentrating cations near the channel mouth, but has a direct and critical role in gating. Our data suggest that E418 contributes to stabilize the S4 voltage sensor in the depolarized position, thus permitting maintenance of the channel open conformation.  相似文献   

4.
In this study, single-channel recordings of high-conductance Ca(2+)-activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)-blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed-blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening.  相似文献   

5.
Gamel K  Torre V 《Biophysical journal》2000,79(5):2475-2493
The permeability ratio between K(+) and Na(+) ions in cyclic nucleotide-gated channels is close to 1, and the single channel conductance has almost the same value in the presence of K(+) or Na(+). Therefore, K(+) and Na(+) ions are thought to permeate with identical properties. In the alpha-subunit from bovine rods there is a loop of three prolines at positions 365 to 367. When proline 365 is mutated to a threonine, a cysteine, or an alanine, mutant channels exhibit a complex interaction between K(+) and Na(+) ions. Indeed K(+), Rb(+) and Cs(+) ions do not carry any significant macroscopic current through mutant channels P365T, P365C and P365A and block the current carried by Na(+) ions. Moreover in mutant P365T the presence of K(+) in the intracellular (or extracellular) medium caused the appearance of a large transient inward (or outward) current carried by Na(+) when the voltage command was quickly stepped to large negative (or positive) membrane voltages. This transient current is caused by a transient potentiation, i.e., an increase of the open probability. The permeation of organic cations through these mutant channels is almost identical to that through the wild type (w.t.) channel. Also in the w.t. channel a similar but smaller transient current is observed, associated to a slowing down of the channel gating evident when intracellular Na(+) is replaced with K(+). As a consequence, a rather simple mechanism can explain the complex behavior here described: when a K(+) ion is occupying the pore there is a profound blockage of the channel and a potentiation of gating immediately after the K(+) ion is driven out. Potentiation occurs because K(+) ions slow down the rate constant K(off) controlling channel closure. These results indicate that K(+) and Na(+) ions do not permeate through CNG channels in the same way and that K(+) ions influence the channel gating.  相似文献   

6.
Voltage-dependent K(+) channels can undergo a gating process known as C-type inactivation, which involves entry into a nonconducting state through conformational changes near the channel's selectivity filter. C-type inactivation may involve movements of transmembrane voltage sensor domains, although the mechanisms underlying this form of inactivation may be heterogeneous and are often unclear. Here, we report on a form of voltage-dependent inactivation gating observed in MthK, a prokaryotic K(+) channel that lacks a canonical voltage sensor and may thus provide a reduced system to inform on mechanism. In single-channel recordings, we observe that Po decreases with depolarization, with a half-maximal voltage of 96 ± 3 mV. This gating is kinetically distinct from blockade by internal Ca(2+) or Ba(2+), suggesting that it may arise from an intrinsic inactivation mechanism. Inactivation gating was shifted toward more positive voltages by increasing external [K(+)] (47 mV per 10-fold increase in [K(+)]), suggesting that K(+) binding at the extracellular side of the channel stabilizes the open-conductive state. The open-conductive state was stabilized by other external cations, and selectivity of the stabilizing site followed the sequence: K(+) ≈ Rb(+) > Cs(+) > Na(+) > Li(+) ≈ NMG(+). Selectivity of the stabilizing site is weaker than that of sites that determine permeability of these ions, suggesting that the site may lie toward the external end of the MthK selectivity filter. We could describe MthK gating over a wide range of positive voltages and external [K(+)] using kinetic schemes in which the open-conductive state is stabilized by K(+) binding to a site that is not deep within the electric field, with the voltage dependence of inactivation arising from both voltage-dependent K(+) dissociation and transitions between nonconducting (inactivated) states. These results provide a quantitative working hypothesis for voltage-dependent, K(+)-sensitive inactivation gating, a property that may be common to other K(+) channels.  相似文献   

7.
To fertilize, mammalian sperm must complete a maturational process called capacitation. It is thought that the membrane potential of sperm hyperpolarizes during capacitation, possibly due to the opening of K(+) channels, but electrophysiological evidence is lacking. In this report, using patch-clamp recordings obtained from isolated mouse spermatogenic cells we document the presence of a novel K(+)-selective inwardly rectifying current. Macroscopic current activated at membrane potentials below the equilibrium potential for K(+) and its magnitude was dependent on the external K(+) concentration. The channels selected K(+) over other monovalent cations. Current was virtually absent when external K(+) was replaced with Na(+) or N-methyl-D-glucamine. Addition of Cs(+) or Ba(2+) (IC(50) of approximately 15 microM) to the external solution effectively blocked K(+) current. Dialyzing the cells with a Mg(2+)-free solution did not affect channel activity. Cytosolic acidification reversibly inhibited the current. We verified that the resting membrane potential of mouse sperm changed from -52 +/- 6 to -66 +/- 9 mV during capacitation in vitro. Notably, application of 0.3-1 mM Ba(2+) during capacitation prevented this hyperpolarization and decreased the subsequent exocytotic response to zona pellucida. A mechanism is proposed whereby opening of inwardly rectifying K(+) channels may produce hyperpolarization under physiological conditions and contribute to the cellular changes that give rise to the capacitated state in mature sperm.  相似文献   

8.
9.
TREK-1 is a member of the mammalian two P domain K(+) channel family. Mouse TREK-1 activity, in transiently transfected COS cells, is reduced at negative resting membrane potentials by both an external Mg(2+) block and an intrinsic voltage-dependent gating mechanism leading to a strong outward rectification. Deletional and chimeric analysis demonstrates that the carboxy terminal domain of TREK-1, but not the PKA phosphorylation site S333, is responsible for voltage-dependent gating. Since the same region is also critically required for TREK-1 mechano-gating, both mechanisms might be functionally linked. Preferential opening of TREK-1 at depolarized potentials will greatly affect action potential duration, recovery from inactivation and neuronal repetitive firing activity.  相似文献   

10.
Using inside-out patches, the effect of various permeant cations on the gating behaviour of the human red cell Ca2(+)-activated K(+)-channel was examined. For symmetric solutions the dwell time histograms indicated two shut and two open states. Mean open times as well as the open-state probability were affected by the permeant cation species: Rb+ stabilised the channel in the open configuration, whereas NH4+ had a destabilising effect. Intermediate stability was obtained in K+ solutions. Bi-ionic experiments indicated that the gating was influenced by the ion species occupying the channel, rather than by ions bound to external modifier sites.  相似文献   

11.
Aminopyridines are known to block potassium (K) currents in excitable membranes in a manner dependent upon membrane potential, such that the block is relieved by depolarization and restored upon repolarization. In the present study, the effects of aminopyridines on voltage-dependent potassium (K) channels were examined in internally perfused, voltage-clamped squid giant axons. The time course of block restoration after conditioning depolarization was found to be modulated by membrane electric field, K-channel gating, and external cations. Depolarized holding potentials accelerated block restoration without altering steady-state block levels, suggesting that the voltage dependence of block restoration may be related to K channel gating rather than drug binding per se. In support of this notion, low external calcium concentration, which shifts the voltage dependence of K-channel gating to more negative potentials, also accelerated block restoration. Conversely, the relationship between the rate of block restoration and membrane holding potential was shifted in the depolarizing direction by phloretin, an agent that shifts the dependence of K-channel opening on membrane potential in a similar manner. Modification of K-channel gating also was found to alter the rate of block restoration. Addition of internal zinc or internal treatment with glutaraldehyde slowed the time course of both K-channel activation and aminopyridine block restoration. Aminopyridines also were found to interact in the K channel with external Cs+, NH4+, and Rb+, each of which slowed aminopyridine block restoration. Our results suggest that aminopyridines enter and occlude K channels, and that the availability of the binding site may be modulated by channel gating such that access is limited by the probability of the channel reaching an intermediate closed state at the resting potential.  相似文献   

12.
We have used data obtained from measurements of ionic and gating currents to study the process of K+ channel activation in squid giant axons. A marked improvement in the recording of K+ channel gating currents (IKg) was obtained by total replacement of Cl- in the external solution by NO-3, which eliminates approximately 50% of the Na+ channel gating current with no effect on IKg. The midpoint of the steady state charge-voltage (Qrel - V) relationship is approximately 40 mV hyperpolarized to that of the steady state activation (fo - V) curve, which is an indication that the channel has many nonconducting states. Ionic and gating currents have similar time constants for both ON and OFF pulses. This eliminates any Hodgkin-Huxley nx scheme for K+ channel activation. An interrupted pulse paradigm shows that the last step in the activation process is not rate limiting. IKg shows a nonartifactual rising phase, which indicates that the first step is either the slowest step in the activation sequence or is voltage independent. These data are consistent with the following general scheme for K+ channel activation: (formula; see text)  相似文献   

13.
Li LT  Zhang LB  Si YL  Xiao FC  Li D  Gao S  Li DL  Zhou SS 《生理学报》2008,60(3):311-319
本文旨在研究急性低温/再复温对大鼠心室肌膜电位和钾电流的影响.膜电位和膜电流分别在全细胞膜片钳的电压钳和电流钳模式下记录.当细胞外灌流液从25℃降低到4℃后,一过性外向电流(transient outward current, Ito)完全消失,膜电位为 60mV时的稳态外向K 电流(sustained outward K current, Iss)和膜电位为-120mV时的内向整流K 电流(inward rectifier K current, IK1)分别降低(48.5±14.1)%和(35.7±18.2)%,同时,膜电位绝对值降低.当细胞外灌流液从4℃再升高到36℃后,膜电位出现一过性超级化,然后恢复到静息电位水平;在58个细胞中,有36个细胞伴随复温出现ATP-敏感性K (ATP-sensitive K , KATP)通道的激活.再复温引起的上述变化可以被Na /K -ATP酶抑制剂哇巴因(100μmol/L)所抑制.再复温引起的KATP通道激活也能被蛋白激酶A抑制剂H-89(100μmol/L)所抑制.在细胞膜电位被钳制在0mV时,当细胞外灌流液温度从25℃降低到4℃后,细胞的体积没有发生明显改变,但当再复温引起KATP通道激活后,细胞很快发生皱缩,同时细胞内部出现许多折光较强的斑点.上述结果表明急性低温/再复温对大鼠心室肌膜电位和K 电流有明显影响,并提示KATP通道激活可能与心肌低温/再复温损伤有关.  相似文献   

14.
JP Johnson  Jr  JR Balser    PB Bennett 《Biophysical journal》1999,77(5):2534-2541
We have studied the functional effects of extracellular Cd(2+) on human ether-a-go-go-related gene (HERG) encoded K(+) channels. Low concentrations (10-200 &mgr;M) of extracellular Cd(2+) increased outward currents through HERG channels; 200 &mgr;M Cd(2+) more than doubled HERG currents and altered current kinetics. Cd(2+) concentrations up to 200 &mgr;M did not change the voltage dependence of channel activation, but shifted the voltage dependence of inactivation to more depolarized membrane potentials. Cd(2+) concentrations >/=500 &mgr;M shifted the voltage dependence of channel activation to more positive potentials. These results are consistent with a somewhat specific ability of Cd(2+) to destabilize the inactivated state. We tested the hypothesis that channel inactivation is essential for Cd(2+)-induced increases in HERG K(+) currents, using a double point mutation (G628C/S631C) that diminishes HERG inactivation (Smith, P. L., T. Baukrowitz, and G. Yellen. 1996. Nature (Lond.). 379:833-836). This inactivation-removed mutant is insensitive to low concentrations of Cd(2+). Thus, Cd(2+) had two distinct effects on HERG K(+) channels. Low concentrations of Cd(2+) caused relatively selective effects on inactivation, resulting in a reduction of the apparent rectification of the channel and thereby increasing HERG K(+) currents. Higher Cd(2+) concentrations affected activation gating as well, possibly by a surface charge screening mechanism or by association with a lower affinity site.  相似文献   

15.
CC Kuo  FP Chen 《Biophysical journal》1999,77(5):2552-2562
Modulation of voltage-dependent transient K(+) currents (A type K(+) or K(A) current) by Zn(2+) was studied in rat hippocampal neurons by the whole-cell patch-clamp technique. It is found that Zn(2+) selectively binds to the resting (deactivated or closed) K(A) channels with a dissociation constant (K(d)) of approximately 3 &mgr;M, whereas the affinity between Zn(2+) and the inactivated K(A) channels is 1000-fold lower. Zn(2+) therefore produces a concentration-dependent shift of the K(A) channel inactivation curve and enhances the K(A) current elicited from relatively positive holding potentials. It is also found that the kinetics of Zn(2+) action are fast enough to compete with the transition rates between different gating states of the channel. The rapid and selective binding of Zn(2+) to the closed K(A) channels keeps the channel in the closed state and explains the ion's concentration-dependent slowing effect on the activation of K(A) current. This in turn accounts for the inhibitory effect of Zn(2+) on the K(A) current elicited from hyperpolarized holding potentials. Because the molecular mechanisms underlying these gating changes are kinetic interactions between the binding-unbinding of Zn(2+) and the intrinsic gating processes of the channel, the shift of the inactivation curve and slowing of K(A) channel activation are quantitatively correlated with ambient Zn(2+) over a wide concentration range without "saturation"; i.e., The effects are already manifest in micromolar Zn(2+), yet are not saturated even in millimolar Zn(2+). Because the physiological concentration of Zn(2+) could vary over a similarly wide range according to neural activities, Zn(2+) may be a faithful physiological "fine tuner," controlling and controlled by neural activities through its effect on the K(A) current.  相似文献   

16.
Mechanical contraction of a cardiac muscle cell is related to the electric activation of the plasma membrane. As in the neuron cell, inflow of the Na(+) ions across the cell membrane causes electric activation with amplitude of about 100 mV. However, differently from the nerve cell, the action potential lasts a few hundred milliseconds before repolarization. Moreover, several types of K(+) channel such as the classical inward rectifier K(+) channel, the voltage dependent channel and others are responsible for the formation of the action potential. The mechanism of opening and closing the K(+) channels is not thoroughly elucidated. In the present paper, a four state Markov model with one open and three closed states is studied to obtain open and close probabilities of the gates constituting a specific ionic channel. The probability density functions of durations of opening and closing of the channel are also discussed.  相似文献   

17.
K(+) channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation gating, involving a conformational change at the K(+) selectivity filter, has recently been recognized as a major K(+) channel regulatory mechanism. In the K(+) channel hERG, inactivation controls the length of the human cardiac action potential. Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629. Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements. In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism for newly discovered hERG activators.  相似文献   

18.
19.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

20.
We studied the effect of monovalent thallium ion (Tl(+)) on the gating of single Kir2.1 channels, which open and close spontaneously at a constant membrane potential. In cell-attached recordings of single-channel inward current, changing the external permeant ion from K(+) to Tl(+) decreases the mean open-time by approximately 20-fold. Furthermore, the channel resides predominantly at a subconductance level, which results from a slow decay (tau = 2.7 ms at -100 mV) from the fully open level immediately following channel opening. Mutation of a pore-lining cysteine (C169) to valine abolishes the slow decay and subconductance level, and single-channel recordings from channels formed by tandem tetramers containing one to three C169V mutant subunits indicate that Tl(+) must interact with at least three C169 residues to induce these effects. However, the C169V mutation does not alter the single-channel closing kinetics of Tl(+) current. These results suggest that Tl(+) ions change the conformation of the ion conduction pathway during permeation and alter gating by two distinct mechanisms. First, they interact with the thiolate groups of C169 lining the cavity to induce conformational changes of the ion passageway, and thereby produce a slow decay of single-channel current and a dominant subconductance state. Second, they interact more strongly than K(+) with the main chain carbonyl oxygens lining the selectivity filter to destabilize the open state of the channel and, thus, alter the open/close kinetics of gating. In addition to altering gating, Tl(+) greatly diminishes Ba(2+) block. The unblocking rate of Ba(2+) is increased by >22-fold when the external permeant ion is switched from K(+) to Tl(+) regardless of the direction of Ba(2+) exit. This effect cannot be explained solely by ion-ion interactions, but is consistent with the notion that Tl(+) induces conformational changes in the selectivity filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号