首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary 3-Aminopyridine mononucleotide, a nicotinamide mononucleotide analog, was prepared by enzymatic cleavage of 3-aminopyridine adenine dinucleotide by a snake venom phosphodiesterase and isolated by means of ion exchange chromatography. The spectrophotometric and fluorometric properties of this analog were studied. Several anions were shown to quench the fluorescence intensity of this analog. pH was shown to have a pronounced effect on the fluorescence intensity. 3-Aminopyridine mononucleotide was shown to be a coenzyme-competitive inhibitor of yeast alcohol dehydrogenase. The 3-aminopyridine mononucleotide was diazotized with the use of nitrous acid. A time dependent irreversible inactivation of yeast alcohol dehydrogenase resulted from incubation with the diazotized 3-aminopyridine mononucleotide at pH 7.0. Incubation of the enzyme with NAD prior to the addition of the diazotized 3-aminopyridine mononucleotide protected the enzyme against inactivation.Recently, 3-aminopyridine adenine dinucleotide (AAD) and 3-aminopyridine adenine dinucleotide phosphate (AADP), NAD and NADP analogs respectively, were synthesized by either chemical or enzymatic processes. The chemical, spectrophotometric properties of these dinucleotides have also been reported. It was demonstrated that these nucleotides serve as coenzyme-competitive inhibitors of dehydrogenases but did not function as coenzymes for oxidation-reduction reactions catalyzed by these enzymes. The pyridine amino group of AAD was diazotized and the diazotized derivative was shown to inactive yeast alcohol dehydrogenase irreversibly. Isolation of modified cysteine residue from the modified yeast alcohol dehydrogenase resulting from inactivation by diazotized AAD has been reported. Thus, diazotized AAD proved to be a site specific label for the coenzyme binding site of yeast alcohol dehydrogenase. It was of interest to prepared and determine the properties of a NMN analog, 3-aminopyridine mononucleotide (APMN). The preparation of APMN was accomplished by enzymatic cleavage of AAD with snake venom phosphodiesterase according to a method previously reported. This report deals with the preparation, properties and studies of APMN with yeast alcohol dehydrogenase.This work was supported in part by Research Grant GR-IX from Old Dominion University Research Foundation.  相似文献   

2.
The assimilatory NADPH-nitrate reductase (NADPH:nitrate oxidoreductase, EC 1.6.6.3) from Neurospora crassa is competitively inhibited by 3-aminopyridine adenine dinucleotide (AAD) and 3-aminopyridine adenine dinucleotide phosphate (AADP) which are structural analogs of NAD and NADP, respectively. The amino group of the pyridine ring of AAD(P) can react with nitrous acid to yield the diazonium derivative which may covalently bind at the NAD(P) site. As a result of covalent attachment, diazotized AAD(P) causes time-dependent irreversible inactivation of nitrate reductase. However, only the NADPH-dependent activities of the nitrate reductase, i.e. the overall NADPH-nitrate reductase and the NADPH-cytochrome c reductase activities, are inactivated. The reduced methyl viologen- and reduced FAD-nitrate reductase activities which do not utilize NADPH are not inhibited. This inactivation by diazotized AADP is prevented by 1 mM NADP. The inclusion of 1 muM FAD can also prevent inactivation, but the FAD effect differs from the NADP protection in that even after removal of the exogenous FAD by extensive dialysis or Sephadex G-25 filtration chromatography, the enzyme is still protected against inactivation. The FAD-generated protected form of nitrate reductase could again be inactivated if the enzyme was treated with NADPH, dialyzed to remove the NADPH, and then exposed to diazotized AADP. When NADP was substituted for NADPH in this experiment, the enzyme remained in the FAD-protected state. Difference spectra of the inactivated nitrate reductase demonstrated the presence of bound AADP, and titration of the sulfhydryl groups of the inactivated enzyme revealed that a loss of accessible sulfhydryls had occurred. The hypothesis generated by these experiments is that diazotized AADP binds at the NADPH site on nitrate reductase and reacts with a functional sulfhydryl at the site. FAD protects the enzyme against inactivation by modifying the sulfhydryl. Since NADPH reverses this protection, it appears the modifications occurring are oxidation-reduction reactions. On the basis of these results, the physiological electron flow in the nitrate reductase is postulated to be from NADPH via sulfhydryls to FAD and then the remainder of the electron carriers as follows: NADPH leads to -SH leads to FAD leads to cytochrome b-557 leads to Mo leads to NO-3.  相似文献   

3.
Chicken liver d-3-phosphoglycerate dehydrogenase was effectively inhibited at 25 °C by micromolar concentrations of N-ethyl-, N-butyl-, N-pentyl-, N-heptyl-, and N-phenylmaleimide. The rates of inactivation of the enzyme did not vary with chain length of the N-alkylmaleimide derivative. Saturation kinetics in the same concentration range was observed with each maleimide derivative studied. A maximum pseudo-first-order rate constant of 0.1 min?1 was determined for all of the maleimide inactivation reactions. Compounds shown to bind at the coenzyme binding site such as NAD, 3-aminopyridine adenine dinucleotide, adenosine diphosphoribose, and adenosine diphosphate did not protect the enzyme against N-ethylmaleimide inactivation. AMP was demonstrated to be a substrate-competitive inhibitor of the enzyme. AMP and 3-phosphoglycerate both effectively protected the enzyme against N-ethylmaleimide inactivation. Diazotized 3-aminopyridine adenine dinucleotide, a sulfhydryl modifying, site-labeling reagent for several pyridine nucleotide-dependent enzymes, did not inactivate the phosphoglycerate dehydrogenase but functioned rather as a reversible coenzyme-competitive inhibitor.  相似文献   

4.
Previous studies of Haemophilus influenzae documented the importance of several pyridine nucleotide-dependent enzymes in processing extracellular NAD and NMN to satisfy the V-factor growth requirement of the organism. The substrate specificities of two of these enzymes. NMN:ATP adenylyltransferase and NAD kinase, were investigated following partial purification. The ability of the transferase to utilize 3-acetylpyridine mononucleotide and 3-aminopyridine mononucleotide as substrates for the synthesis of the corresponding dinucleotides was demonstrated. The NAD kinase was observed to accept 3-acetylpyridine adenine dinucleotide as a substrate but failed to utilize 3-aminopyridine adenine dinucleotide. The mononucleotides of 3-acetylpyridine and 3-aminopyridine were shown to be as effective as the corresponding dinucleotides in the support of growth and inhibition of growth of H. influenzae, respectively. Inhibition of growth of H. influenzae by submicromolar 3-aminopyridine adenine dinucleotide was shown to occur because 3-aminopyridine mononucleotide was produced from it in reactions catalysed by the H. influenzae periplasmic nucleotide pyrophosphatase. The presence of an additional important pyridine nucleotide-dependent enzyme, NMN glycohydrolase, is also reported.  相似文献   

5.
A series of N-alkylmaleimides varying in chainlength from N-methyl- to N-octylmaleimide inclusive was shown to effectively inactivate sheep liver sorbitol dehydrogenase at pH 7.5 and 25 degrees C. The apparent second-order rate constants for inactivation increased with increasing chainlength of the N-alkylmaleimide used. Positive chainlength effects were also indicated by the Kd values for the N-ethyl and N-heptyl derivatives obtained from studies of the saturation kinetics observed for inactivation of the enzyme at high concentrations of these maleimides. The complete inactivation of sorbitol dehydrogenase was demonstrated to occur through the selective covalent modification of one cysteine residue per subunit of enzyme. The stoichiometry of enzyme inactivation was supported on the one hand by fluorescence titration with fluorescein mercuric acetate of the native and the inactivated enzyme, and, on the other hand, by the simultaneous inactivation of the enzyme with selective modification of one sulfhydryl per subunit by N-[p-(2-benzoxazolyl)phenyl]maleimide. Protection of the enzyme from N-alkylmaleimide inactivation was observed with the binding of NADH, whereas both NAD and sorbitol were ineffective as protecting ligands. Diazotized 3-aminopyridine adenine dinucleotide, in contrast to previous studies of this reagent with yeast alcohol dehydrogenase and rabbit muscle glycerophosphate dehydrogenase, did not function as a site-labeling reagent for sorbitol dehydrogenase.  相似文献   

6.
Homogeneous liver 3-hydroxy-3-methylglutaryl coenzyme A synthase, which catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA, also carries out: (a) a rapid transacetylation from acetyl-CoA to 31-dephospho-CoA and (b) a slow hydrolysis of acetyl-CoA to acetate and CoA. Transacetylation and hydrolysis occur at 50 and 1 percent, respectively, the rate of the synthasecatalyzed condensation reaction. It appears that an acetyl-enzyme intermediate is involved in the transacetylase and hydrolase reactions of 3-hydroxy-3-methylglutaryl-CoA synthase, as well as in the over-all condensation process. Covalent binding to the enzyme of a [14C]acetyl group contributed by [1(-14)C]acetyl-CoA is indicated by migration of the [14C]acetyl group with the dissociated synthase upon electrophoresis in dodecyl sulfate-urea and by precipitation of [14C]acetyl-enzyme with trichloroacetic acid. At 0 degrees and a saturating level of acetyl-CoA, the synthase is rapidly (less than 20 s) acetylated yielding 0.6 acetyl group/enzyme dimer. Performic acid oxidation completely deacetylates the enzyme, suggesting the site of acetylation to be a cysteinyl sulfhydryl group. Proteolytic digestion of [14C]acetyl-S-enzyme under conditions favorable for intramolecular S to N acetyl group transfer quantitatively liberates a labeled derivative with a [14C]acetyl group stable to performic acid oxidation. The labeled oxidation product is identified as N-[14C]acetylcysteic acid, thus demonstrating a cysteinyl sulfhydryl group as the original site of acetylation. The ability of the acetylated enzyme, upon addition of acetoacetyl-CoA, to form 3-hydroxy-3-methylglutaryl-CoA indicates that the acetylated cysteine residue is at the catalytic site.  相似文献   

7.
Treatment of 3-aminopyridine adenine dinucleotide phosphate with sodium periodate resulted in oxidation of the ribose linked to 3-aminopyridine ring and cleavage of the dinucleotide into 3-aminopyridine and adenosine moieties. These two moieties were separated by thin layer chromatography and were synergistically bound to pigeon liver malic enzyme (EC 1.1.1.40), causing inactivation of the enzyme. The inactivation showed saturation kinetics. The apparent binding constant for the reversible enzyme-reagent binary complex (KI) and the maximum inactivation rate constant at saturating reagent concentration (kmax) were found to be 1.1 +/- 0.02 mM and 0.068 +/- 0.001 min-1, respectively. L-Malate at low concentration enhanced the inactivation rate by lowering the KI value whereas high malate concentration increased the kmax. Mn2+ or NADP+ partially protected the enzyme from the inactivation and gave additive protection when used together. L-Malate eliminated the protective effect of NADP+ or Mn2+. Maximum and synergistic protection was afforded by NADP+, Mn2+ plus L-malate (or tartronate). Oxidized and cleaved 3-aminopyridine adenine dinucleotide phosphate was also found to be a competitive inhibitor versus NADP+ in the oxidative decarboxylation reaction catalyzed by malic enzyme with a Ki value of 4.1 +/- 0.1 microM. 3-Aminopyridine adenine dinucleotide phosphate or its periodate-oxidized cleaved products bound to the enzyme anticooperatively. Oxidized 3-aminopyridine adenine dinucleotide phosphate labeled the nucleotide binding site of the enzyme with a fluorescent probe which may be readily traced or quantified. The completely inactivated enzyme incorporated 2 mol of reagent/mol of enzyme tetramer. The inactivation was partially reversible by dilution and could be made irreversible by treating the modified enzyme with sodium borohydride. This fluorescent compound and its counterpart-oxidized 3-aminopyridine adenine dinucleotide may be a potential affinity label for all other NAD(P)+-dependent dehydrogenases.  相似文献   

8.
Phosphoribosylpyrophosphate synthetase from Salmonella typhimurium contains four cysteine residues per subunit. Three of these react readily with 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB), forming an active derivative with kinetic and physical properties similar to the native enzyme, but one reacts only under denaturing conditions. Stoichiometric amounts of KMnO4 inactivate the DTNB-treated enzyme. The loss of activity is correlated with the oxidation of the remaining cysteinyl group to cysteic acid by KMnO4. Amino acid analysis indicates that no other residues are altered. The rate of inactivation of the enzyme is decreased 30-fold by saturatin g concentrations of the substrate ATP. Inorganic phosphate also protects substantially against KMnO4. Titration of the native enzyme with limiting amounts of KMnO4 shows that the sulfhydryl group essential for activity competes effectively with the other sulfhydryl groups for KMnO4. These results suggest that the essential sulfhydryl group is near the active site, and that KMnO4, a phosphate analogue, can act as an active site-directed reagent at the ATP binding site of the enzyme. The KMnO4-oxidized enzyme is more highly aggregated than untreated enzyme and fails to bind ATP appreciably.  相似文献   

9.
S R Earle  S G O'Neal  R R Fisher 《Biochemistry》1978,17(22):4683-4690
Chemical-modification studies on submitochondrial particle pyridine dinucleotide transhydrogenase (EC 1.6.1.1) demonstrate the presence of one class of sulfhydryl group in the nicotinamide adenine dinucleotide phosphate (NADP) site and another peripheral to the active site. Reaction of the peripheral sulfhydryl group with N-ethylmaleimide, or both classes with 5,5'-dithiobis(2-nitrobenzoic acid), completely inactivated transhydrogenase. NADP+ or NADPH nearly completely protected against 5,5'-dithiobis(2-nitrobenzoic acid) inactivation and modification of both classes of sulfhydryl groups, while NADP+ only partially protected against and NADPH substantially stimulated N-ethylmaleimide inactivation. Methyl methanethiolsulfonate treatment resulted in methanethiolation at both classes of sulfhydryl groups, and either NADP+ or NADPH protected only the NADP site group. S-Methanethio and S-cyano transhydrogenases were active derivatives with pH optima shifted about 1 unit lower than that of the native enzyme. These experiments indicate that neither class of sulfhydryl group is essential for transhydrogenation. Lack of involvement of either sulfhydryl group in energy coupling to transhydrogenation is suggested by the observations that S-methanethio transhydrogenase is functional in (a) energy-linked transhydrogenation promoted by phenazine methosulfate mediated ascorbate oxidation and (b) the generation of a membrane potential during the reduction of NAD+ by reduced nicotinamide adenine dinucleotide phosphate (NADPH).  相似文献   

10.
The three cysteine residues per subunit of pig muscle phosphoglucose isomerase show different reactivities toward various sulfhydryl reagents. The organomercurial, p-mercuribenzoate, can titrate two of the sulfhydryl groups under nondenaturing conditions. 2,2'-Dithiodipyridine, 5,5'-dithiobis(2-nitrobenzoic acid), iodoacetamide, methyl 2-pyridyl disulfide, and 2-(2'-pyridylmercapto)mercuri-4-nitrophenol all label only one sulfhydryl group under the same conditions, whereas iodoacetic acid does not react with any of the sulfhydryl groups except when the enzyme is fully denatured. It is concluded, therefore, that charge, rather than steric restraint, is the determining factor for the differences seen in the modification patterns of the enzyme by these reagents. When enzyme was first labeled with 2,2'-dithiodipyridine and subsequently with p-mercuribenzoate, it was found that the latter, in a secondary process, will stoichiometrically react with the anion released by the former after the initial reaction with cysteine. The differences in reactivity of the cysteine residues toward the referred-to reagents have been exploited to specifically modify each of the three individual cysteine residues of pig muscle phosphoglucose isomerase.  相似文献   

11.
The l-alanine dehydrogenase from cell-free extracts of Desulfovibrio desulfuricans was purified approximately 56-fold. The Michaelis constants for the substrates of the amination reaction and the pH optima for the reactions catalyzed by this enzyme closely agree with those reported for other l-alanine dehydrogenases. Pyruvate was found to inhibit the amination reaction. The enzyme was absolutely specific for l-alanine and nicotinamide adenine dinucleotide. Its sensitivity to para-chloromecuribenzoate suggests that sulfhydryl groups may be necessary for enzymatic activity. These extracts also contained a nicotinamide adenine dinucleotide phosphate-specific glutamic dehydrogenase which was separated from the l-alanine dehydrogenase during purification.  相似文献   

12.
The reaction of one of the four cysteinyl residues of thymidylate synthetase from methotrexate-resistant Lactobacillus casei with a variety of sulfhydryl reagents results in complete inhibition of the enzyme. Kinetic studies indicate that the rates of reactivity of the reagents tested are N-ethylmaleimide > iodoacetamide > N-(iodoacetylaminoethyl)-S-naphthylamine-1-sulfonic acid > iodoacetic acid. The enzyme is also inactivated by 5-Hg-deoxyuridylate, a compound which reacts stoichiometrically with a single cysteine. Unlike the other reagents, the inhibition produced by this compound can be completely reversed by added thiols. The same cysteine appears to react with all of the sulfhydryl reagents, as shown by competition experiments and by protection against inactivation by deoxyuridylate. Even at a 100-fold excess of the alkylating agents, only one of the four cysteines in the native enzyme was reactive, attesting to the uniqueness of this residue. Carboxypeptidase A inactivation of the enzyme does not affect either the binding of deoxyuridylate to the enzyme or the reactivity of N-ethylmaleimide with the “catalytic” cysteine. Under denaturing conditions, all four cysteinyl residues react with N-ethylmaleimide or iodoacetate, as shown by identifying the reaction products by amino acid analysis. The covalent ternary complex [(+)5,10-methylenetetrahydrofolate-5-fluorodeoxyuridylate-thymidylate synthetase] (molar ratio = 2:2:1) revealed only two cysteinyl residues capable of reacting with N-ethylmaleimide or iodoacetate upon denaturation. From these data, it appears that one cysteine is involved in the binding of deoxyuridylate and that two of the enzyme's four cysteines are responsible for binding 5-fluorodeoxyuridylate in the ternary complex.  相似文献   

13.
H Y Neujahr 《Biochemistry》1988,27(10):3770-3775
Spectrophotometric titration of phenol hydroxylase (EC 1.14.13.7) with phenol indicated interacting sites for phenol binding. In the absence of added thiol, the cooperativity was positive up to a pH around 8.0 but negative at higher pH values. With added thiol-ethylenediaminetetraacetate, the cooperativity was negative at all investigated pH values. Conversely, a corresponding titration of an enzyme preparation that had been selectively modified in its two most reactive SH groups indicated positive cooperativity at all studied pH values. This selective modification affects the activity of the enzyme to a very minor degree, in contrast to more extensive SH blocking, which displaces flavin adenine dinucleotide with a corresponding loss of activity [Neujahr, H. Y., & Gaal, A. (1975) Eur. J. Biochem. 58, 351-357]. The reactivity of SH groups in the enzyme was significantly decreased after turnover. Thiol treatment restored it to that of the native enzyme. Adding phenol prior to reduced nicotinamide adenine dinucleotide phosphate (NADPH) in the assay of phenol hydroxylase gave immediate linearity and higher initial rates than when NADPH was added first. In the absence of added thiol, there was then a shift of the pH optimum. The results indicate slow conformational changes limiting the rate of the overall reaction. The two most reactive SH groups of phenol hydroxylase, though not participating in any obvious redox reactions, are important for these slow conformational changes and for the cooperativity of phenol-binding sites, wherein the anionic S- forms may be involved (pKa for cysteine is 8.35).  相似文献   

14.
Initial velocity, product inhibition, and substrate inhibition studies suggest that the endogenous lactate dehydrogenase activity of duck epsilon-crystallin follows an order Bi-Bi sequential mechanism. In the forward reaction (pyruvate reduction), substrate inhibition by pyruvate was uncompetitive with inhibition constant of 6.7 +/- 1.7 mM. In the reverse reaction (lactate oxidation), substrate inhibition by L-lactate was uncompetitive with inhibition constant of 158 +/- 25 mM. The cause of these inhibitions may be due to epsilon-crystallin-NAD(+)-pyruvate and epsilon-crystallin-NADH-L-lactate abortive ternary complex formation as suggested by the multiple inhibition studies. Pyruvate binds to free enzyme very poorly, with a very large dissociation constant. Bromopyruvate, fluoropyruvate, pyruvate methyl ester, and pyruvate ethyl ester are alternative substrates for pyruvate. 3-Acetylpyridine adenine dinucleotide, nicotinamide 1,N6-ethenoadenine dinucleotide, and nicotinamide hypoxanthine dinucleotide serve as alternative coenzymes for epsilon-crystallin. All the above alternative substrates or coenzymes showed an intersecting initial-velocity pattern conforming to the order Bi--Bi kinetic mechanism. Nicotinic acid adenine dinucleotide, thionicotinamide adenine dinucleotide, and 3-aminopyridine adenine dinucleotide acted as inhibitors for this enzymatic crystallin. The inhibitors were competitive versus NAD+ and noncompetitive versus L-lactate. alpha-NAD+ was a noncompetitive inhibitor with respect to the usual beta-NAD+. D-Lactate, tartronate, and oxamate were strong dead-end inhibitors for the lactate dehydrogenase activity of epsilon-crystallin. Both D-lactate and tartronate were competitive inhibitors versus L-lactate while oxamate was a competitive inhibitor versus pyruvate. We conclude that the structural requirements for the substrate and coenzyme of epsilon-crystallin are similar to those of other dehydrogenases and that the carboxamide carbonyl group of the nicotinamide moiety is important for the coenzyme activity.  相似文献   

15.
Genomes of nucleocytoplasmic large DNA viruses (NCLDVs) encode enzymes that catalyze the formation of disulfide bonds between cysteine amino acid residues in proteins, a function essential for the proper assembly and propagation of NCLDV virions. Recently, a catalyst of disulfide formation was identified in baculoviruses, a group of large double-stranded DNA viruses considered phylogenetically distinct from NCLDVs. The NCLDV and baculovirus disulfide catalysts are flavin adenine dinucleotide (FAD)-binding sulfhydryl oxidases related to the cellular Erv enzyme family, but the baculovirus enzyme, the product of the Ac92 gene in Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is highly divergent at the amino acid sequence level. The crystal structure of the Ac92 protein presented here shows a configuration of the active-site cysteine residues and bound cofactor similar to that observed in other Erv sulfhydryl oxidases. However, Ac92 has a complex quaternary structural arrangement not previously seen in cellular or viral enzymes of this family. This novel assembly comprises a dimer of pseudodimers with a striking 40-degree kink in the interface helix between subunits. The diversification of the Erv sulfhydryl oxidase enzymes in large double-stranded DNA viruses exemplifies the extreme degree to which these viruses can push the boundaries of protein family folds.  相似文献   

16.
Treatment of 3-aminopyridine adenine dinucleotide phosphate with sodium periodate in the neutral pH resulted in oxidation of the ribose linked to 3-aminopyridine and cleavage of the dinucleotide into adenosine- and 3-aminopyridine-containing moieties. Separation of these moieties was afforded by thin-layer chromatography, high-performance liquid chromatography, and fast protein liquid chromatography. From fast atom bombardment mass spectra and nuclear magnetic resonance spectra, the adenosine-containing moiety was identified as 2'-phosphoadenosine 5'-phosphate while the aminopyridine moiety was present in a mixture of the hydrated 3-aminopyridine mononucleotide/nucleoside dialdehyde. Separation of the completely oxidized product by Pharmacia fast protein liquid chromatography gave three major peaks corresponding to 2'-phosphoadenosine 5'-phosphate, 2'-phosphoadenosine 5'-diphosphate and oxidized 3-aminopyridine nucleoside, with minor amount of oxidized 3-aminopyridine mononucleotide. Thus the oxidized 3-aminopyridine adenine dinucleotide phosphate was shown to cleave by two pathways: it may either undergo beta-elimination to give 2'-phosphoadenosine 5'-diphosphate and oxidized 3-aminopyridine nucleoside; or the phosphodiester linkage may be hydrolyzed to give 2'-phosphoadenosine 5'-phosphate and oxidized 3-aminopyridine mononucleotide. The latter compound may further undergo beta-elimination and eventually give oxidized 3-aminopyridine nucleoside. Hydrolysis could be prevented by storing the sample as lyophilized powder, while beta-elimination was diminished by lowering the storage temperature. We found that the lyophilized powder of oxidized 3-aminopyridine adenine dinucleotide phosphate can be stored at -50 degrees C for several months with minimum decomposition.  相似文献   

17.
Licia N.Y. Wu  Ronald R. Fisher 《BBA》1982,681(3):388-396
Modification of pyridine dinucleotide transhydrogenase with tetranitromethane resulted in inhibition of its activity. Development of a membrane potential in submitochondrial particles during the reduction of 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADPH decreased to nearly the same extent as the transhydrogenase rate on tetranitromethane treatment of the membrane. Kinetics of the inactivation of homogeneous transhydrogenase and the enzyme reconstituted into phosphatidylcholine liposomes indicate that a single essential residue was modified per active monomer. NADP+, NADPH and NADH gave substantial protection against tetranitromethane inactivation of both the nonenergy-linked and energy-linked transhydrogenase reactions of submitochondrial particles and the NADPH → AcPyAD+ reaction of reconstituted enzyme. NAD+ had no effect on inactivation. Tetranitromethane modification of reconstituted transhydrogenase resulted in a decrease in the rate of coupled H+ translocation that was comparable to the decrease in the rate of NADPH → AcPyAD+ transhydrogenation. It is concluded that tetranitromethane modification controls the H+ translocation process solely through its effect on catalytic activity, rather than through alteration of a separate H+-binding domain. Nitrotyrosine was not found in tetranitromethane-treated transhydrogenase. Both 5,5′-dithiobis(2-nitrobenzoate)-accessible and buried sulfhydryl groups were modified with tetranitromethane. NADH and NADPH prevented sulfhydryl reactivity toward tetranitromethane. These data indicate that the inhibition seen with tetranitromethane results from the modification of a cysteine residue.  相似文献   

18.
The kinase and sugar phosphate exchange reactions of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by treatment with 5'-p-fluorosulfonylbenzoyladenosine or 8-azido-ATP, but activity could be restored by the addition of dithiothreitol. This inactivation was accompanied by incorporation of 5'-p-sulfonylbenzoyl[8-14C]adenosine into the enzyme that was not released by the addition of dithiothreitol. The lack of effect of ATP analogs on the ATP/ADP exchange or on bisphosphatase activity and reversal of their effects on the kinase and sugar phosphate reactions by dithiothreitol suggest that 1) they reacted with sulfhydryl groups important for sugar phosphate binding in the kinase reaction, and 2) the inactivation of the kinase by these analogs involves a specific reaction that is not related to their general mechanism of attacking nucleotide-binding sites. In addition, alkylation of the enzymes' sulfhydryls with iodoacetamide prevented inactivation by 5'-p-fluorosulfonylbenzoyladenosine, suggesting that the same thiols were involved. o-Iodosobenzoate inactivated the kinase and sugar phosphate exchange; the inactivation was reversed by dithiothreitol; but there was no effect on the bisphosphatase or nucleotide exchange, indicating that oxidation occurred at the same sulfhydryl that are associated with sugar phosphate binding. ATP or ADP, but not fructose 6-phosphate, protected these groups from modification by 5'-p-fluorosulfonylbenzoyladenosine, 8-azido-ATP, and o-iodosobenzoate. ATP also induced dramatic changes in the circular dichroism spectrum of the enzyme, suggesting that adenine nucleotide protection of thiol groups resulted from changes in enzyme secondary structure. Analysis of cyanogen bromide fragments of 14C-carboxamidomethylated enzyme showed that all radioactivity was associated with cysteinyl residues in a single cyanogen bromide fragment. Three of these cysteinyl residues are clustered in a 38-residue region, which probably plays a role in maintaining the conformation of the kinase sugar phosphate-binding site.  相似文献   

19.
Synthetic cysteine-containing peptides were unidirectionally conjugated to albumin via disulfide bonds using the S-(3-nitro-2-pyridinesulfenyl) derivative of cysteine. This method employs the N-hydroxysuccinimide ester of Boc-[S-(3-nitro-2-pyridinesulfenyl)]-cysteine, a protected amino acid derivative used in peptide synthesis, as a heterobifunctional cross-linking agent. The disulfide bonds in the conjugates are formed by the reaction of free thiols with S-(3-nitro-2-pyridinesulfenyl) groups. Bovine albumin was conjugated in this manner to several synthetic peptides derived from human fibrin. Amino acid analysis of these conjugates demonstrated incorporations of from 6 to 11 peptide molecules per molecule of protein.  相似文献   

20.
Conformational changes in proton pumping transhydrogenases have been suggested to be dependent on binding of NADP(H) and the redox state of this substrate. Based on a detailed amino acid sequence analysis, it is argued that a classical betaalphabetaalphabeta dinucleotide binding fold is responsible for binding NADP(H). A model defining betaA, alphaB, betaB, betaD, and betaE of this domain is presented. To test this model, four single cysteine mutants (cfbetaA348C, cfbetaA390C, cfbetaK424C, and cfbetaR425C) were introduced into a functional cysteine-free transhydrogenase. Also, five cysteine mutants were constructed in the isolated domain III of Escherichia coli transhydrogenase (ecIIIH345C, ecIIIA348C, ecIIIR350C, ecIIID392C, and ecIIIK424C). In addition to kinetic characterizations, effects of sulfhydryl-specific labeling with N-ethylmaleimide, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid, and diazotized 3-aminopyridine adenine dinucleotide (phosphate) were examined. The results are consistent with the view that, in agreement with the model, beta-Ala348, beta-Arg350, beta-Ala390, beta-Asp392, and beta-Lys424 are located in or close to the NADP(H) site. More specifically, beta-Ala348 succeeds betaB. The remarkable reactivity of betaR350C toward NNADP suggests that this residue is close to the nicotinamide moiety of NADP(H). beta-Ala390 and beta-Asp392 terminate or succeed betaD, and are thus, together with the region following betaA, creating the switch point crevice where NADP(H) binds. beta-Asp392 is particularly important for the substrate affinity, but it could also have a more complex role in the coupling mechanism for transhydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号