首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure that virtually eliminates nonspecific adsorption of radiolabeled proteins during immunoprecipitation was devised utilizing staphylococcal cells containing protein A (Staph A). Immunoprecipitates (antigen-antibody complexes) were solubilized from Staph A pellets into detergent micelles by incubation in a small volume of 1% sodium dodecyl sulfate (SDS) at 23 degrees C for 10 min. To allow re-formation of immunocomplexes and rebinding to new Staph A, the SDS-solubilized material was diluted 20-fold in buffer containing 1% Triton X-100 and 0.5% sodium deoxycholate. Specific conductance measurements revealed that this solubilization and subsequent reimmunoadsorption of antibody-antigen complexes occur at SDS concentrations that are first above and then below its critical micelle concentration. This procedure lowered the nonspecific background from approximately 2250 parts per million (ppm) to less than 25 ppm with a final recovery of 30-50% depending on the antigen and antibody. Chaotropic agents such as 2 M urea, 0.2 M KOH, and 3.5 M MgCl2 (as well as combinations of urea and SDS) can substitute for 1% SDS, although the final recovery is somewhat lower. Fluorography of radiolabeled proteins obtained in this manner displays virtually undetectable background even for exposures as long as 2 months. These methods allowed the unambiguous detection of low-abundance antigens at a high level of sensitivity, for example, mouse mammary tumor virus protein products and epidermal growth factor receptor.  相似文献   

2.
Four detergents have been compared for identification of the Plasmodium knowlesi variant antigen on infected erythrocytes by immunoprecipitation analysis. Erythrocytes infected with late trophozoite and schizont forms of cloned asexual parasites were labeled by lactoperoxidase-catalyzed radioiodination and extracted either with the anionic detergents sodium dodecyl sulfate (SDS) or cholate, the neutral detergent Triton X-100, or the zwitterion 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). After addition of Triton X-100 to SDS and cholate extracts, parallel immunoprecipitations of the four extracts were performed using rhesus monkey antisera of defined agglutinability. Identical results were obtained with clone Pk1(A+), which has 125I-variant antigens of Mr 210,000 and 190,000, and with clone Pk1(B+)1+, which has variant antigens of Mr 200,000-205,000. SDS yielded maximal levels of immunoprecipitated 125I-variant antigens. Variant-specific immunoprecipitation was detected in some experiments with Triton X-100 and cholic acid but with significantly lower recovery than with SDS. CHAPS extraction did not yield the variant antigens on immunoprecipitation. The variant antigens could also be identified in Triton X-100-insoluble material by subsequent extraction with SDS, indicating that failure to recover these proteins in the Triton X-100-soluble fraction is due to failure of this detergent to extract the variant antigens rather than to degradation during extraction. We suggest that the 125I-variant antigens either have a structure that renders them intrinsically insoluble in Triton X-100, cholate, or CHAPS, or that they are associated in some way with host cell membrane components that also resist solubilization by these detergents.  相似文献   

3.
Quantitation of human immunoglobulin G (IgG) and albumin by agarose electroimmunodiffusion is influenced by the incorporation of ionic and nonionic detergents in the gel. The highest concentrations of each detergent at which human IgG and albumin determinations could be performed without perturbing the quantitations were 4% Triton X-100, 4% Tween 80, 1% NP-40, 0.5% sodium deoxycholate (SDOC), 0.5% Zwittergent, and 0.1% sodium dodecyl sulfate (SDS), and mixtures of Triton X-100, SDOC, and SDS. These detergent combinations all resulted in greater perturbations of albumin quantitation than of IgG. Immunoprecipitation of human IgG was quantitated in the absence and presence of Triton X-100, Zwittergent, and SDS. SDS was shown to cause nonspecific precipitation, whereas below 1% Triton X-100 or 0.5% Zwittergent no effects upon the immunoprecipitations were observed.  相似文献   

4.
Using highly sensitive and quantitative radioimmunoassay procedures we have measured the effects of different concentrations of three commonly used detergents, SDS, DOC, and Triton X-100, on antibody-antigen reactions. Triton X-100, had a relatively mild effect on primary antigen-antibody bindings, the precipitin reaction, and a double antibody RIA as evidenced by only an 8 to 10% inhibition of binding or precipitation. These results were not detergent concentration dependent, as Triton concentrations ranging from 5 to 0.1% had virtually no differential effects. Sodium deoxycholate (DOC) had a more profound effect on both primary antigen-antibody binding and the precipitin reaction than did Triton X-100, and its effects, unlike those of Triton X-100, were concentration dependent. There was a direct relationship between concentration of DOC and degree of inhibition of both primary binding and immune precepitation especially in antigen excess. Sodium dodecylsulfate (SDS), at concentrations 10- to 100-fold less than either Triton X-100 or DOC, had profound inhibitory effects on primary antigen-antibody binding, the precipitin reaction, and a double antibody radioimmunoassay. Generally, at concentrations greater that 0.01% SDS, almost all immunochemical reactivity is destroyed.  相似文献   

5.
The effect of sodium dodecyl sulfate (SDS) and Triton X-100 on the hydrolytic activity of lipases A and B from Candida rugosa has been studied. Lipase B is significantly more affected than lipase A by the presence of both surfactants; Triton X-100 produces a more deleterious effect than SDS with both isoenzymes. In addition, the stability of lipases A and B in the presence of different concentrations of SDS was investigated; lipase A was more stable than isoform B. Both isoenzymes were chemically modified by reaction of their amino groups with octanoyl chloride or activated polyethylene glycol (PEG, mol. wt. 5000). In all cases the modification produced a protective effect against denaturation by SDS. In particular, PEG5000-liPases A and B were significantly more stable (stabilization factor: 3-4) than the native enzymes at the surfactant concentrations tested.  相似文献   

6.
Triton X-100 can be used to clarify vague immunoprecipitin lines from bacterial antigens; however, non-immunological precipitation can lead to mistaken interpretation of immunodiffusion results. If Triton X-100 is added directly to the gel during preparation rather than to the antigen well, this detergent artifact can be eliminated.  相似文献   

7.
Triton X-100 can be used to clarify vague immunoprecipitin lines from bacterial antigens; however, non-immunological precipitation can lead to mistaken interpretation of immunodiffusion results. If Triton X-100 is added directly to the gel during preparation rather than to the antigen well, this detergent artifact can be eliminated.  相似文献   

8.
A partially purified lipase produced by the thermophile Geobacillus thermoleovorans CCR11 was immobilized by adsorption on porous polypropylene (Accurel EP-100) in the presence and absence of 0.1% Triton X-100. Lipase production was induced in a 2.5% high oleic safflower oil medium and the enzyme was partially purified by diafiltration (co. 500,000 Da). Immobilization conditions were established at 25 °C, pH 6, and a protein concentration of 0.9 mg/mL in the presence and absence of 0.1% Triton X-100. Immobilization increased enzyme thermostability but there was no change in neither the optimum pH nor in pH resistance irrelevant to the presence of the detergent during immobilization. Immobilization with or without Triton X-100 allowed the reuse of the lipase preparation for 11 and 8 cycles, respectively. There was a significant difference between residual activity of immobilized and soluble enzyme after 36 days of storage at 4 °C (P < 0.05). With respect to chain length specificity, the immobilized lipase showed less activity over short chain esters than the soluble lipase. The immobilized lipase showed good resistance to desorption with phosphate buffer and NaCl; minor loses with detergents were observed (less than 50% with Triton X-100 and Tween-80), but activity was completely lost with SDS. Immobilization of G. thermoleovorans CCR11 lipase in porous polypropylene is a simple and easy method to obtain a biocatalyst with increased stability, improved performance, with the possibility for re-use, and therefore an interesting potential use in commercial conditions.  相似文献   

9.
Triton X-100-insoluble residues from Micrococcus lysodeikticus membranes were analyzed by crossed immunoelectrophoresis after dispersal of the residues in sodium dodecyl sulfate (SDS). Conditions which produce no obvious distortion of the immunoprecipitate profile and which allow qualitative and quantitative analyses of the antigens present in the extracts are described. Two main antigens were detected; these were identified as succinate dehydrogenase (EC 1.3.99.1) and adenosine triphosphatase (EC 3.6.1.3). As determined by peak area estimations, the maximal release of succinate dehydrogenase and of adenosine triphosphatase from Triton X-100-insoluble membrane residues occurred at protein/SDS ratios of about 4.3:1 (0.2% SDS) and 6.8:1 (0.13% SDS), respectively. A comparison of enzyme activities of SDS extracts with those of untreated, control Triton X-100-insoluble membrane residues indicated that both the succinate dehydrogenase and the adenosine triphosphatase antigens were released with a full (or enhanced) catalytic potential at or below concentrations of SDS required to effect maximal solubilization of the enzyme in question. Evidence is also presented to suggest that the more acidic of the two components detected by crossed immunoelectrophoresis for the heterogeneous adenosine triphosphatase antigen is more sensitive to SDS than is the other. Both succinate dehydrogenase and adenosine triphosphatase lost catalytic activity and were denatured at protein/SDS ratios lower than 3.4:1.  相似文献   

10.
When concentrated dispersions of tripalmitin in Triton X-100 are added to reaction mixtures containing soluble beef liver lipase, the rate of hydrolysis of tripalmitin increases with incubation time. When the diluted substrate is aged at 37 degrees C for 3 hr before the addition of enzyme, the rate of hydrolysis is greater than the rate with freshly diluted dispersions and is constant for at least 2 hr. The reciprocal of the rate of hydrolysis is a complex function of the reciprocal of the substrate concentration when measured with freshly diluted substrate dispersions. A linear relationship between these reciprocals is obtained when measured with aged preparations of substrate. The rate and extent of increase of the velocity of hydrolysis of the aged substrate in relation to the velocity of hydrolysis of freshly diluted substrate are directly proportional to the substrate concentration and inversely proportional to the Triton X-100 concentration. The apparent V(max) of beef liver lipase for tripalmitin in diluted and aged dispersions is independent of the Triton X-100 concentration, while the apparent K(m) is inversely proportional to the Triton X-100 concentration. The apparent K(m) for tripalmitin complexes at zero Triton X-100 concentration was judged to be 7.5 x 10(-5) m. The molecular size of dispersion complexes does not change significantly as dispersions are aged. The spherical diameter of the complexes assessed by gel filtration techniques is in the order of 100 A.  相似文献   

11.
The present method of quantitating soluble asialoglycoprotein (galactosyl) receptor activity relies on the selective precipitation of receptor-ligand complexes to allow separation from free ligand. To provide an alternative to selective precipitation procedures, a simple and rapid method to assay for detergent-solubilized galactosyl receptor activity has been developed which uses permeabilized, fixed cells as a source of immobilized solid-phase receptors. Isolated rat hepatocytes were treated with digitonin to make available the internal as well as the external receptors. The permeable cells were also treated with glutaraldehyde to prevent further protein loss during subsequent exposure to detergents such as Triton X-100. The permeable/fixed cells, which retained about 70% of their total 125I-asialo-orosomucoid (125I-ASOR)-binding activity, with 89% specific binding, were insoluble even in 0.5% Triton X-100 and were easily pelleted. The permeable/fixed cells can be prepared in advance and stored frozen for months. A detergent extract of receptor is mixed with a constant amount of both 125I-ASOR and permeable/fixed cells. Soluble active receptors compete with immobilized receptors on the treated cell for binding of the 125I-ASOR. The assay is reproducible, linear over a broad range of soluble receptor concentration, and can quantitate receptor activity from as few as 10(5) hepatocytes. A modified purification procedure for the rat hepatic galactosyl receptor using this competition assay is also described.  相似文献   

12.
本文研究了蚕豆叶肉原生质体经透明质酸酶、核糖核酸酶、神经氨酸酶、碱性磷酸酶、胰蛋白酶、脂肪酶六种水解酶和SDS、Triton X-100、CTMAB三种表面活性剂以及秋水仙素、细胞松驰素B处理后的电融合过程。结果表明:胰蛋白酶处理后的原生质体融合率明显下降;碱性磷酸酶、脂肪酶以及核糖核酸酶、透明质酸酶、神经氨酸酶处理的原生质体电融合率均有不同程度的上升。Triton X-100和CTMAB促进原生质体的电融合,但较高浓度(0.01%)的SDS起抑制作用。秋水仙素和细胞松驰素B处理的原生质体其电融合率有较大幅度的增高。  相似文献   

13.
In order to examine whether it would be possible to obtain, by a simple extraction procedure from EDTA-erythrocyte-membranes, a partially purified preparation of the "band 3 zone" proteins, we have tested four solubilizing agents of common use. Detergents, both ionic (DOC and SDS) and non ionic (Tween 80 and Triton X-100), were not able, in our experimental conditions, to completely solubilize erythrocyte fragmented membranes which had previously been washed in EDTA-buffers. However, they were able to solubilize some of the membrane proteins, which could then be separated by SDS-PGE. The PGE densitometric profiles reported in this communication indicate that the protein mixture extracted by the ionic detergents DOC and SDS qualitatively reflects the protein composition of the membranes. Among the non ionic detergents, on the other hand, Triton X-100 appeared to be able to extract mainly one band (most probably the band 3 zone), while Tween 80 did not apparently extract any of the membrane proteins. Detergent concentrations, medium composition and experimental procedures are described in detail.  相似文献   

14.
The flagellins of Methanospirillum hungatei strains JF1 and GP1, Methanococcus deltae, and Methanothermus fervidus are glycosylated. Isolated flagellar filaments from these organisms are dissociated by low concentrations (0.5% (v/v)) of Triton X-100. Flagellar filaments from other methanogens (Methanococcus voltae, Methanococcus vannielii and Methanoculleus marisnigri) composed of non-glycosylated flagellins are resistant to Triton X-100 treatment. Consequently, the isolation techniques (employing Triton X-100) used to isolate basal body-hook-filament complexes in eubacteria may not be applicable to many methanogens.  相似文献   

15.
A large scale preparation of brush border membranes is described. Solubilized by either papain or Triton X-100, the sucrase-isomaltase complex is purified in a three-step procedure, including differential centrifugation, Sephadex G-200 and DEAE-cellulose chromatography. Detergent solubilized and protease solubilized sucrase-isomaltase differ in tendency to aggregate but not in enzymatic characteristics. The chemical composition and the molecular weight of the two enzyme complexes are almost identical. Limited digestion of the Triton-solubilized sucrase-isomaltase complex by papain produces a protein electrophoretically indistinguishable from papain-solubilized sucrase-isomaltase together with low molecular proteolytic fragments.  相似文献   

16.
A large scale preparation of brush border membranes is described. Solubilized by either papain or Triton X-100, the sucrase-isomaltase complex is purified in a three-step procedure, including differential centrifugation, Sephadex G-200 and DEAE-cellulose chromatography. Detergent solubilized and protease solubilized sucrase-isomaltase differ in the tendency to aggregate but not in enzymatic characteristics. The chemical composition and the molecular weight of the two enzyme complexes are almost identical. Limited digestion of the Triton-solubilized sucrase-isomaltase complex by papain produces a protein electrophoretically indistinguishable from papain-solubilized sucrase-isomaltase together with low molecular proteolytic fragments.  相似文献   

17.
A procedure is described for fractionating detergent lysates of cells based on the ability of (NH4)2SO4 to induce phase separation of detergents such as Triton X-100, sodium deoxycholate, and sodium cholate, into detergent-rich and detergent-depleted phases. An analysis of six murine lymphocyte cell surface molecules revealed that the partitioning in Triton X-100 of each molecule was highly dependent upon the (NH4)2SO4 concentration, each antigen partitioning into the detergent-rich phase at a defined salt concentration. In contrast, none of the six molecules appeared in the detergent-rich phase of a Triton X-114 phase separation, even though two of the molecules, namely Ly-2/3 and L3T4, are well-characterized integral membrane proteins. It was also observed that (NH4)2SO4 resulted in the partitioning of many nonmembrane proteins into the detergent-rich phase, indicating that the procedure can be used to fractionate all cellular proteins. By judicious choice of (NH4)2SO4 concentrations, precipitation of cellular proteins at two different (NH4)2SO4 concentrations, and combining the method with subcellular fractionation prior to detergent solubilization, substantial enrichment and concentration of particular cellular proteins could be achieved.  相似文献   

18.
Consistent results have not been obtained yet on the presence of antibody to the M protein of measles virus in the sera of patients with subacute sclerosing panencephalitis (SSPE). We performed a comparative study on various immunoprecipitation systems which appeared in the literature and found that the difference in the composition of the solubilizing buffer produced a large variety of results on the immunoprecipitation. [35S]Methionine-labeled Vero cells infected with the Edmonston strain of measles virus were solubilized by 10 different buffers and reacted with hyperimmune rabbit serum to whole virus, monospecific antisera to H, NP, and M proteins of the virus, normal adults' sera, and the sera from 16 SSPE patients. The immune complex was absorbed by protein A and both solubilization and precipitation rates were compared with each viral protein. Although viral proteins were solubilized by all buffers, the solubilization rate varied considerably. M protein was solubilized and was not coprecipitated nonspecifically with any of the other viral proteins. Purified protein A conjugated to Sepharose was preferable to Staphylococcus aureus for absorption of the immune complex since the latter absorbed both viral and host proteins nonspecifically. The precipitation rates of the viral proteins also varied according to the buffers. Better solubilization of the viral proteins seemed to reduce their rate of precipitation for which the presence of SDS may be responsible, and the presence of the protease inhibitors may also affect the results of immunoprecipitation. Detection of M protein in the immunoprecipitates was largely influenced by the kind of buffer used: some buffers could detect it clearly, but others could not defect it at all. Among the solubilizing buffers tested, Saleh's buffer (Virology 93: 369-376 (1979)),, which contains 0.5% DOC and 0.5% Triton X-100, was most reliable for detection of the anti-M antibody in the rabbit serum, because it showed a high solubilization and high precipitation rates of viral proteins without nonspecific absorption by protein A or coprecipitation of M proteins with any of the other proteins. Using this buffer, we could definitely detect M proteins in the immunoprecipitates from the sera of all six healthy adults and 15 out of 16 patients with SSPE. It was found, however, that the amount of M proteins in SSPE patients was lower than that in healthy adults and varied considerably.  相似文献   

19.
A simple and sensitive procedure for the quantitative estimation of Triton X-100 is described. The method is based on the formation of turbidity from Triton X-100 with phenol. The turbidity is proportional to Triton X-100 in a range of 20–80 μg/ml. Protein, mucopolysaccharide, and nucleic acid do not interfere in this turbidity formation. The method is especially useful for detection of the residue after the removal of Triton X-100 from solubilized samples.  相似文献   

20.
Lactoperoxidase-catalyzed radioiodination was used to study reactions between surface antigens and antibodies on BHK-21 cells infected with HSV-1 and HSV-2. Isolation of iodinated surface antigens was achieved by indirect immune precipitation of Triton X-100 disrupted cells with antisera to HSV and IgG. Analysis of immune precipitates by polyacrylamide gel electrophoresis (PAGE) revealed at least 10 antigens, ranging in m.w. from 35 x 103 to 160 x 103 daltons. Antigens were detectable on cell surfaces as early as 2 hr post-infection. Electrophoretic patterns of surface antigens induced by HSV-1 were similar to those induced by HSV-2. In both cases the major portion of activity was associated with glycoprotein(s) in the range of 115 x 103 to 130 x 103 daltons. A reduced amount of radioactivity was obtained if cells were reacted with anti-HSV sera before disruption with Triton X-100, suggesting that less surface antigen was accessible to HSV antibody applied directly to intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号