首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
R Manganelli  S Ricci    G Pozzi 《Journal of bacteriology》1996,178(19):5813-5816
Conjugative transposons are genetic elements able to promote their own intracellular transposition and intercellular conjugal transfer. They move by an excision-integration system related to that of lambdoid phages, in which the first step is the excision of the transposon from the donor replicon to form a covalently closed circular intermediate which contains a heteroduplex joint. In this work, sequencing both strands of the circular intermediate heteroduplex joint, it was found that, as during lambda phage excision, Tn916 excises from the host DNA by 5'-protruding staggered endonucleolytic cleavages.  相似文献   

2.
Transposon Tn916 is a 16.4-kb broad-host-range conjugative transposon originally detected in the chromosome of Enterococcus faecalis DS16. Transposition of Tn916 and related transposons involves excision of a free, nonreplicative, covalently closed circular intermediate that is substrate for integration. Excisive recombination requires two transposon-encoded proteins, Xis-Tn and Int-Tn, whereas the latter protein alone is sufficient for integration. Here we report that conjugative transposition of Tn916 requires the presence of a functional integrase in both donor and recipient strains. We have constructed a mutant, designated Tn916-int1, by replacing the gene directing synthesis of Int-Tn by an allele inactivated in vitro. In mating experiments, transfer of Tn916-int1 from Bacillus subtilis to E. faecalis was detected only when the transposon-encoded integrase was supplied by trans-complementation in both the donor and the recipient. These results suggest that conjugative transposition of Tn916 requires circularization of the element in the donor followed by transfer and integration of the nonreplicative intermediate in the recipient.  相似文献   

3.
Tn2603 is a multiple-resistance transposon encoding resistance to ampicillin, streptomycin, sulfonamide, and mercury and having a molecular size of 20 kilobase pairs, with 200-base-pair inverted repeats at both ends. The essential sites and functions of Tn2603 which are required for its transposition were determined through construction and characterization of various deletion mutants affecting the efficiency of transposition. Deletions were introduced in plasmid pMK1::Tn2603 by partial digestion with restriction endonuclease EcoRI in vitro. Analysis of deletion mutants showed that the inverted repeat segments at both ends of the trans-acting diffusible product(s) encoded in the right-hand side of the central portion were required for the transposition of Tn2603. An essential gene product was revealed as a protein having a molecular weight of 110,000 by analysis of polypeptides synthesized in Escherichia coli minicells. This protein was assumed to be the so-called transposase.  相似文献   

4.
C E Rubens  L M Heggen 《Plasmid》1988,20(2):137-142
The tetracycline resistance gene encoded within the transposon Tn916 was replaced with the gene encoding erythromycin resistance from the plasmid pVA838. The derivative transposon of Tn916 was designated Tn916 delta E and was introduced into the Streptococcus faecalis chromosome by protoplast transformation. The conjugation/transposition functions of Tn916 delta E were similar to those observed for Tn916 in S. faecalis and Tn916 delta E was capable of self-conjugation at frequencies similar to those of other S. faecalis and Group B Streptococcus. This transposon will be useful for mutagenesis studies in gram-positive organisms, especially in those species where erythromycin resistance is a more desirable selectable marker.  相似文献   

5.
F Lu  G Churchward 《The EMBO journal》1994,13(7):1541-1548
Transposition of the conjugative transposon Tn916 requires the activity of a protein, called Int, which is related to members of the integrase family of site-specific recombinases. This family includes phage lambda integrase as well as the Cre, FLP and XerC/XerD recombinases. Different proteins, consisting of fragments of Tn916 Int protein fused to the C-terminal end of maltose binding protein (MBP) were purified from Escherichia coli. DNase I protection experiments showed that MBP-INT proteins containing the C-terminal end of Int bound to the ends of the transposon and adjacent plasmid DNA. MBP-INT proteins containing the N-terminal end of Int bound to sequences within the transposon close to each end. Competition binding experiments showed that the sites recognized by the C- and N-terminal regions of Int did not compete with each other for binding to MBP-INT. We suggest that Tn916 and related conjugative transposons are unique among members of the integrase family of site-specific recombination systems because the presence of two DNA binding domains in the Int protein might allow Int to bridge recombining sites, and this bridging seems to be the sole mechanism ensuring that only correctly aligned molecules undergo recombination.  相似文献   

6.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

7.
In Lactococcus lactis excision of Tn916 is limited by the concentration of integrase and is increased by providing more excisionase. However, even with increased excision of Tn916 in L. lactis, no conjugative transfer is detectable. This suggests that L. lactis is deficient in a host factor(s) required for conjugative transposition.  相似文献   

8.
Genetic organization of the bacterial conjugative transposon Tn916.   总被引:22,自引:18,他引:22       下载免费PDF全文
Tn916, which encodes resistance to tetracycline, is a 16.4-kilobase conjugative transposon originally identified on the chromosome of Streptococcus faecalis DS16. The transposon has been cloned in Escherichia coli on plasmid vectors, where it expresses tetracycline resistance; it can be reintroduced into S. faecalis via protoplast transformation. We have used a lambda::Tn5 bacteriophage delivery system to introduce Tn5 into numerous sites within Tn916. The Tn5 insertions had various effects on the behavior of Tn916. Some insertions eliminated conjugative transposition but not intracellular transposition, and others eliminated an excision step believed to be essential for both types of transposition. A few inserts had no effect on transposon behavior. Functions were mapped to specific regions on the transposon.  相似文献   

9.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

10.
Sequence analysis of termini of conjugative transposon Tn916.   总被引:20,自引:23,他引:20       下载免费PDF全文
Transposon Tn916 is a 16.4-kilobase, broad-host-range, conjugative transposon originally identified on the chromosome of Enterococcus (Streptococcus) faecalis DS16. Its termini have been sequenced along with the junction regions for two different insertions. The ends were found to contain imperfect inverted repeat sequences with identity at 20 of 26 nucleotides. Further in from the ends, imperfect directly repeated sequences were present, with 24 of 27 nucleotides matching. The transposon junction regions contained homologous segments but of a nature not consistent with a direct duplication of the target sequence. Within the right terminus was a potential outwardly reading promoter. Tn916 is believed to transpose via an excision-insertion mechanism; based on the analyses of the termini, as well as two target sequences (before insertion and after excision), a possible model is suggested.  相似文献   

11.
12.
In Lactococcus lactis excision of Tn916 is limited by the concentration of integrase and is increased by providing more excisionase. However, even with increased excision of Tn916 in L. lactis, no conjugative transfer is detectable. This suggests that L. lactis is deficient in a host factor(s) required for conjugative transposition.  相似文献   

13.
Tn916 [carries tet(M)] is a 16.4-kb conjugative transposon that can establish itself in multiple copies in Enterococcus faecalis. To study the interaction of coresident homologous transposons during conjugation, an E. faecalis mutant defective in homologous recombination was utilized for construction of strains harboring Tn916 delta E (a derivative in which erm is substituted for tet) on the chromosome and Tn916 on a nonconjugative plasmid. When these strains were used as donors, the two transposons were able to transfer independently; however, they were found to transfer and become coestablished in the recipient up to 50% of the time. In contrast, cotransfer of a plasmid marker located outside the transposon occurred at a frequency of no greater than 0.5%. Separate experiments showed that mobilization of the nonconjugative plasmids pAM401 and pVA749 by chromosome-borne copies of Tn916 occurred only at low frequencies (generally less than 2% cotransfer). The data imply that the initiation of transposition of Tn916 results in a trans activation that is specific for homologous transposons present in the same cell.  相似文献   

14.
Transposition of the ampicillin-resistant transposon Tn3 was reproduced in vitro using the Escherichia coli cell extract. In this cell-free system, we used plasmid DNA carrying mini-Tn3 as donor and phage lambda DNA as target and assayed for ampicillin-resistance transducing phages formed by cointegration of these DNA molecules. Ampicillin-resistance transducing phages, which were obtained by in vitro packaging of lambda DNA after the in vitro transposition reaction, were formed only in the presence of Tn3 transposase. The reaction required mini-Tn3 with the proper sequence and orientation of the terminal inverted repeats of Tn3. The reaction also required DNA synthesis but not RNA synthesis by E. coli RNA polymerase.  相似文献   

15.
DNA binding by the Xis protein of the conjugative transposon Tn916.   总被引:1,自引:0,他引:1       下载免费PDF全文
We purified the Xis protein of the conjugative transposon Tn916 and showed by nuclease protection experiments that Xis bound specifically to sites close to each end of Tn916. These specific binding sites are close to, and in the same relative orientation to, binding sites for the N-terminal domain of Tn916 integrase protein. These results suggest that Xis is involved in the formation of nucleoprotein structures at the ends of Tn916 that help to correctly align the ends so that excision can occur.  相似文献   

16.
The binding of Tn916 Xis protein to its specific sites at the left and right ends of the transposon was compared using gel mobility shift assays. Xis formed two complexes with different electrophoretic mobilities with both right and left transposon ends. Complex II, with a reduced mobility, formed at higher concentrations of Xis and appeared at an eightfold lower Xis concentration with a DNA fragment from the left end of the transposon rather than with a DNA fragment from the right end of the transposon, indicating that Xis has a higher affinity for the left end of the transposon. Methylation interference was used to identify two G residues that were essential for binding of Xis to the right end of Tn916. Mutations in these residues reduced binding of Xis. In an in vivo assay, these mutations increased the frequency of excision of a minitransposon from a plasmid, indicating that binding of Xis at the right end of Tn916 inhibits transposon excision. A similar mutation in the specific binding site for Xis at the left end of the transposon did not reduce the affinity of Xis for the site but did perturb binding sufficiently to alter the pattern of protection by Xis from nuclease cleavage. This mutation reduced the level of transposon excision, indicating that binding of Xis to the left end of Tn916 is required for transposon excision. Thus, Xis is required for transposon excision and, at elevated concentrations, can also regulate this process.  相似文献   

17.
The genome of Mycoplasma mycoides subsp. mycoides GC1176-2 was cleaved into six large fragments by the endonuclease KpnI which also cleaved the transposon Tn916 once. This has allowed genomic mapping of insertion sites for 50 transformants of GC1176-2 containing Tn916. Almost all of the mapped sites were clearly separate. The transformants provide a bank of genomes each with a KpnI site at a different position to facilitate mapping of gene loci.  相似文献   

18.
Conjugative transfer of the transposon Tn919 to lactic acid bacteria   总被引:1,自引:0,他引:1  
Abstract The streptococcal transposon Tn 919 was transferred from Streptococcus faecalis GF590 to selected Group N Streptococcus strains and to one strain each of Lactobacillus plantarum and Leuconostoc cremoris , using the filter mating method. An S. lactis MG1363 Rifr Tcr transconjugant also acted as a donor, but was less efficient than GF590. Frequencies of transfer varied between 4.0 × 10−8 and 5.29 × 10−5 per recipient. Further analysis of S. lactis MG1363 Smr Tcr transconjugants showed that insertion of Tn 919 into the chromosome was site-specific.  相似文献   

19.
The conjugative transposon Tn916 encodes a protein called INT(Tn916) which, based on DNA sequence comparisons, is a member of the integrase family of site-specific recombinases. Integrase proteins such as INT(lambda), FLP, and XERC/D that promote site-specific recombination use characteristic, conserved amino acid residues to catalyze the cleavage and ligation of DNA substrates during recombination. The reaction proceeds by a two-step transesterification reaction requiring the formation of a covalent protein-DNA intermediate. Different requirements for homology between recombining DNA sites during integrase-mediated site-specific recombination and Tn916 transposition suggest that INT(Tn916) may use a reaction mechanism different from that used by other integrase recombinases. We show that purified INT(Tn916) mediates specific cleavage of duplex DNA substrates containing the Tn916 transposon ends and adjacent bacterial sequences. Staggered cleavages occur at both ends of the transposon, resulting in 5' hydroxyl protruding ends containing coupling sequences. These are sequences that are transferred with the transposon from donor to recipient during conjugative transposition. The nature of the cleavage products suggests that a covalent protein-DNA linkage occurs via a residue of INT(Tn916) and the 3'-phosphate group of the DNA. INT(Tn916) alone is capable of executing the strand cleavage step required for recombination during Tn916 transposition, and this reaction probably occurs by a mechanism similar to that of other integrase family site-specific recombinases.  相似文献   

20.
Abstract Mutagenesis with the transposon Tn916 was used as a strategy to identify genes required for synthesis of the Galα(1–4)βGal component of Haemophilus influenzae strain RM7004 lipopolysaccharide. Insertion of Tn916 into an open reading frame (ORF) encoding a protein with 75% homology to the Escherichia coli methionine related protein (Mrp) is described. Mutations in mrp resulted in loss of reactivity with monoclonal antibody (mAb) 4C4, which recognises Galα(1–4)βGal, and expression of LPS with a different electrophoretic profile to that of wild-type RM7004. An unexpected feature of this mutation was that it appeared to influence the number of copies of 5'-CAAT-3' present in lic2A , a gene which is also required for biosynthesis and phase variable expression of the Galα(1–4)βGal LPS epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号