首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on hippocampal glycine release are extremely rare. We here investigated release from mouse hippocampus glycinergic terminals selectively pre-labelled with [3H]glycine through transporters of the GLYT2 type. Purified synaptosomes were incubated with [3H]glycine in the presence of the GLYT1 blocker NFPS to abolish uptake (∼ 30%) through GLYT1. The non-GLYT1-mediated uptake was entirely sensitive to the GLYT2 blocker Org25543. Depolarization during superfusion with high-K+ (15–50 mmol/L) provoked overflows totally dependent on external Ca2+, whereas in the spinal cord the 35 or 50 mmol/L KCl-evoked overflow (higher than that in hippocampus) was only partly dependent on extraterminal Ca2+. In the hippocampus, the Ca2+-dependent 4-aminopyridine (1 mmol/L)-evoked overflow was five-fold lower than that in spinal cord. The component of the 10 μmol/L veratridine-induced overflow dependent on external Ca2+ was higher in the hippocampus than that in spinal cord, although the total overflow in the hippocampus was only half of that in the spinal cord. Part of the veratridine-evoked hippocampal overflow occurred by GLYT2 reversal and part by bafilomycin A1-sensitive exocytosis dependent on cytosolic Ca2+ generated through the mitochondrial Na+/Ca2+ exchanger. As glycine sites on NMDA receptors are normally not saturated, understanding mechanisms of glycine release should facilitate pharmacological modulation of NMDA receptor function.  相似文献   

2.
Abstract: We studied effects of Ca2+ in the incubation medium on [3H]dopamine ([3H]DA) uptake by rat striatal synaptosomes. Both the duration of the preincubation period with Ca2+ (0–30 min) and Ca2+ concentration (0–10 m M ) in Krebs-Ringer medium affected [3H]DA uptake by the synaptosomes. The increase was maximal at a concentration of 1 m M Ca2+ after a 10-min preincubation (2.4 times larger than the uptake measured without preincubation), which reflected an increase in V max of the [3H]DA uptake process. On the other hand, [3H]DA uptake decreased rapidly after addition of ionomycin in the presence of 1 m M Ca2+. The Ca2+-dependent enhancement of the uptake was still maintained after washing synaptosomes with Ca2+-free medium following preincubation with 1 m M Ca2+. Protein kinase C inhibitors did not affect apparently Ca2+-dependent enhancement of the uptake, whereas 1-[ N,O -bis(1,5-isoquinolinesulfonyl)- N -methyl- l -tyrosyl]-4-phenylpiperazine (KN-62; a Ca2+/calmodulin-dependent kinase II inhibitor) and wortmannin (a myosin light chain kinase inhibitor) significantly reduced it. Inhibitory effects of KN-62 and wortmannin appeared to be additive. N -(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7; a calmodulin antagonist) also remarkably inhibited the enhancement. These results suggest that Ca2+-dependent enhancement of [3H]DA uptake is mediated by activation of calmodulin-dependent protein kinases.  相似文献   

3.
Several pathological studies have revealed a prominent involvement of the cerebral cortex in patients with multiple sclerosis (MS). In order to better understand the events that lead to the progressive neuronal dysfunction in MS, herein we explore the contribution of the glutamatergic release in cerebral cortex synaptosomes isolated from rats with experimental autoimmune encephalomyelitis, an animal model reproducing many features of MS. We found that the Ca2+-dependent but not the Ca2+-independent glutamate release induced by KCl and 4-aminopyridine was significantly decreased during the acute stage of the disease. This inhibited release coincides with the onset of the clinical signs and after 24 h tends to recover the level of the control animals. The results also showed an inhibition of the glutamate release stimulated by ionomycin. When the animals were totally recovered from clinical signs, the neurotransmitter release stimulated by the different inductors was similar to the controls. Examination of the cytosolic Ca2+ using fura-2-acetoxymethyl ester revealed that the inhibition of glutamate release could not be attributed to a reduction in voltage-dependent Ca2+ influx. However, this inhibition was concomitant with a lower phosphorylation of synapsin I at P-site1. Our results show that the inhibition observed on the Ca2+-dependent neurotransmitter release from cerebral cortex synaptosomes in experimental autoimmune encephalomyelitis is specific and correlates with the beginning of the clinical disease. Moreover, they suggest an alteration in the metabolism of proteins involved in the vesicular glutamate release more than a deregulation in the influx of cytosolic Ca2+.  相似文献   

4.
Abstract— The effects of l -glutamate and a number of structural analogues on the spontaneous release of [3H]dopamine from slices of rat striatum were examined. Glutamate, and other excitatory amino acids produced a marked stimulation of [3H]DA release which was Ca2+-dependent and unaffected by either procaine or tetrodotoxin. The glutamate-stimulated release was abolished in kainate-lesioned striatum. The action of glutamate was effectively antagonised by glutamamate diethylester and 2-amino-4-phosphonobutyric acid, but only weakly by l -methionine- dl -sulfoximine. Other proposed amino acid antagonists were inactive. The likely site of the releasing action of l -glutamate on presynaptic sites on nigro-striatal DA terminals is discussed.  相似文献   

5.
Abstract: Following incubation with [14C]y-aminobutyric acid (GABA) or [3H]dopamine, slices of rat striatum were superfused with media containing 36 mM K+ or ethylenediamine (EDA), 1 or 5 mM. Both K+ and EDA induced a release of [14C]GABA, the K+-induced release being largely Ca2+-dependent, while the EDA-induced release was not. Whereas K+ also evoked a Ca2+-dependent release of [3H]dopamine, EDA evoked no release of dopamine. EDA may therefore have potential as a specific GABA releasing agent.  相似文献   

6.
Abstract: The time course of Ca2+-dependent [3H]acetylcholine ([3H]ACh) release and inactivation of 45Ca2+ entry were examined in rat brain synaptosomes depolarized by 45 m M [K+]o. Under conditions where the intrasynaptosomal stores of releasable [3H]ACh were neither exhausted nor replenished in the course of stimulation, the K+-evoked release consisted of a major (40% of the releasable [3H]ACh pool), rapidly terminating phase ( t 1/2 = 17.8 s), and a subsequent, slow efflux that could be detected only during a prolonged, maintained depolarization. The time course of inactivation of K+-stimulated Ca2+ entry suggests the presence of fast-inactivating, slow-inactivating, and noninactivating, or very slowly inactivating, components. The fast-inactivating component of the K+-stimulated Ca2+ entry into synaptosomes appears to be responsible for the rapidly terminating phase of transmitter release during the first 60 s of K+ stimulus. The noninactivating Ca2+ entry may account for the slow phase of transmitter release. These results indicate that under conditions of maintained depolarization of synaptosomes by high [K+]o the time course and the amount of transmitter released may be a function of the kinetics of inactivation of the voltage-dependent Ca channels.  相似文献   

7.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

8.
Abstract: Ba2+ has multiple effects on presynaptic terminals. The ion inhibits the K+ channels responsible for stabilizing the plasma membrane potential in the same way as previously reported for dendrotoxin and 4-aminopyridine. Secondly, the ion can substitute fully for Ca2+ in supporting KCl-evoked release of glutamate from guinea-pig cerebrocortical synaptosomes. In the latter case, the kinetics of glutamate release in the presence of saturating Ca2+ or Ba2+ are essentially identical. Substantially lower external concentrations of Ba2+ are required to achieve the same release kinetics as with Ca2+. The average internal free Ba2+ concentration attained during KCl depolarization is some 10-fold higher than that for Ca2+. However, because the fura-2 signal reflects predominantly the overflow of divalent cation after dissociation from the release trigger, it is not the valid parameter to compare effectiveness of the cations in triggering glutamate exocytosis. In view of the established inability of Ba2+ to interact with calmodulin, these results are discussed in relation to theories in which Ca2+/calmodulin-dependent protein kinase-mediated phosphorylation is a prerequisite for synaptic vesicle exocytosis.  相似文献   

9.
Abstract: Excitatory amino acid (EAA) receptors and EAA-mediated stimulation of polyphosphoinositide (poly-PI) turnover were studied in cultured neurons at different days in vitro (DIV). Six main observations have emerged from these studies: (a) Neurons increased their sensitivity to EAAs as a function of time in culture, indicated by increasing EAA-mediated poly-PI turnover, (b) Extracellular Ca2+ concentration played an important role in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated poly-PI turnover in cells at 4 DIV, whereas poly-PI turnover mediated by l -glutamate and trans -1-amino-cyclopentane-1,3-dicarboxylic acid was not Ca2+-dependent. (c) A marked stimulation of poly-PI turnover by AMPA was seen in the cultured neurons at 4 DIV, but not at 17 DIV, suggesting that a distinct EAA receptor sensitive to AMPA is transiently expressed, (d) The Ca2+ ionophore A23187 increased poly-PI turnover in cultured neurons, suggesting that Ca2+ entry is involved in stimulating poly-PI turnover, (e) Stimulation of poly-PI turnover by carbachol was greater in neurons at 17 DIV as compared with −4 DIV, and appeared to be Ca2+-dependent across DIV. (f) 6-Cyano-7-nitroquinoxaline-2,3-dione, an antagonist for non- N -methyl- d -aspartate ionotropic EAA receptors, inhibited 100% and 35% of AMPA-and quisqualate-induced poly-PI turnover, respectively, suggesting an involvement of ionotropic AMPA/quisqualate receptors in stimulating poly-PI turnover.  相似文献   

10.
Neuropeptide Y (NPY) and NPY receptors are widely distributed in the CNS, including the retina, but the role of NPY in the retina is largely unknown. The aim of this study was to investigate whether NPY modulates intracellular calcium concentration ([Ca2+]i) changes in retinal neurons and identify the NPY receptors involved. As NPY decreased the [Ca2+]i amplitudes evoked by 30 mM KCl in only 50% of neurons analyzed, we divided them in two populations: NPY-non-responsive neurons (Δ2/Δ1 ≥ 0.80) and NPY-responsive neurons (Δ2/Δ1 < 0.80), being the Δ2/Δ1 the ratio between the amplitude of [Ca2+]i increase evoked by the second (Δ2) and the first (Δ1) stimuli of KCl. The NPY Y1/Y5, Y4, and Y5 receptor agonists (100 nM), but not the Y2 receptor agonist (300 nM), inhibited the [Ca2+]i increase induced by KCl. In addition, the inhibitory effect of NPY on evoked-[Ca2+]i changes was reduced in the presence of the Y1 or the Y5 receptor antagonists. In conclusion, NPY inhibits KCl-evoked [Ca2+]i increase in retinal neurons through the activation of NPY Y1, Y4, and Y5 receptors. This effect may be viewed as a potential neuroprotective mechanism of NPY against retinal neurodegeneration.  相似文献   

11.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

12.
Sal1p, a novel Ca2+-dependent ATP-Mg/Pi carrier, is essential in yeast lacking all adenine nucleotide translocases. By targeting luciferase to the mitochondrial matrix to monitor mitochondrial ATP levels, we show in isolated mitochondria that both ATP-Mg and free ADP are taken up by Sal1p with a K m of 0.20 ± 0.03 mM and 0.28 ± 0.06 mM respectively. Nucleotide transport along Sal1p is strictly Ca2+ dependent. Ca2+ increases the V max with a S 0.5 of 15 μM, and no changes in the K m for ATP-Mg. Glucose sensing in yeast generates Ca2+ transients involving Ca2+ influx from the external medium. We find that carbon-deprived cells respond to glucose with an immediate increase in mitochondrial ATP levels which is not observed in the presence of EGTA or in Sal1p-deficient cells. Moreover, we now report that during normal aerobic growth on glucose, yeast mitochondria import ATP from the cytosol and hydrolyse it through H+-ATP synthase. We identify two pathways for ATP uptake in mitochondria, the ADP/ATP carriers and Sal1p. Thus, during exponential growth on glucose, mitochondria are ATP consumers, as those from cells growing in anaerobic conditions or deprived of mitochondrial DNA which depend on cytosolic ATP and mitochondrial ATPase working in reverse to generate a mitochondrial membrane potential. In conclusion, the results show that growth on glucose requires ATP hydrolysis in mitochondria and recruits Sal1p as a Ca2+-dependent mechanism to import ATP-Mg from the cytosol. Whether this mechanism is used under similar settings in higher eukaryotes is an open question.  相似文献   

13.
Abstract: We studied the action of H2O2 on the exocytosis of glutamate by cerebrocortical synaptosomes. The treatment of synaptosomes with H2O2 (50–150 µ M ) for a few minutes results in a long-lasting depression of the Ca2+-dependent exocytosis of glutamate, induced by KCl or by the K+-channel inhibitor 4-aminopyridine. The energy state of synaptosomes, as judged by the level of phosphocreatine and the ATP/ADP ratio, was not affected by H2O2, although a transient decrease was observed after the treatment. H2O2 did not promote peroxidation, as judged by the formation of malondialdehyde. In indo-1-loaded synaptosomes, the treatment with H2O2 did not modify significantly the KCl-induced increase of [Ca2+]i. H2O2 inhibited exocytosis also when the latter was induced by increasing [Ca2+]i with the Ca2+ ionophore ionomycin. The effects of H2O2 were unchanged in the presence of superoxide dismutase and the presence of the Fe3+ chelator deferoxamine. These results appear to indicate that H2O2, apparently without damaging the synaptosomes, induces a long-lasting inhibition of the exocytosis of glutamate by acting directly on the exocytotic process.  相似文献   

14.
Abstract: During K+ -induced depolarization of isolated rat brain nerve terminals (synaptosomes), 1 m M Ba2+ could substitute for 1 m M Ca2+ in evoking the release of endogenous glutamate. In addition, Ba2+ was found to evoke glutamate release in the absence of K+-induced depolarization. Ba2+ (1–10 m M ) depolarized synaptosomes, as measured by voltage-sensitive dye fluorescence and [3H]-tetraphenylphosphonium cation distribution. Ba2+ partially inhibited the increase in synaptosomal K+ efflux produced by depolarization, as reflected by the redistribution of radiolabeled 86Rb+. The release evoked by Ba2+ was inhibited by tetrodotoxin (TTX). Using the divalent cation indicator fura-2, cytosolic [Ca2+] increased during stimulation by approximately 200 n M , but cytosolic [Ba2+] increased by more than 1 μ M . Taken together, our results indicate that Ba2+ initially depolarizes synaptosomes most likely by blocking a K+ channel, which then activates TTX-sensitive Na+ channels, causing further depolarization, and finally enters synaptosomes through voltage-sensitive Ca2+channels to evoke neurotransmitter release directly. Though Ba2+-evoked glutamate release was comparable in level to that obtained with K+-induced depolarization in the presence of Ca2+, the apparent intrasynaptosomal level of Ba2+ required for a given amount of glutamate release was found to be several-fold higher than that required of Ca2+.  相似文献   

15.
Abstract: The effect of energy failure on Cl-dependent l -glutamate ( l -Glu) transport was examined with an in vitro preparation. Rat brain slices were incubated in low oxygen and glucose-deprived medium (in vitro ischemia), and a synaptic membrane fraction was prepared from the slices. Cl-dependent l -[3H]Glu uptake into vesicles increased about twofold after 20 min of in vitro ischemia. The increased l -[3H]Glu uptake was inhibited by l -Glu, dl -2-amino-4-phosphonobutyrate, l -homocysteic acid, l -cystine, 4,4'-diisothiocyano-2,2'-disulfonic stilbene, and removal of Cl. Uptakes of Na+-dependent l -[3H]-Glu, [3H]GABA, and [3H]taurine were not changed by the in vitro ischemia. In vitro ischemia increased the V max value without affecting the K m value. The increased l -[3H]Glu uptake by in vitro ischemia was reduced by subsequent incubation in a normoxic glucose-containing solution. ATP content in brain slices decreased to <10% of control values by in vitro ischemia for 10 min. The decrease in ATP content was restored by subsequent incubation in normoxic glucose-containing solution. Treatment with veratrine, 2,4-dinitrophenol, carbonyl cyanide m -chlorophenylhydrazone, and NaCN in normoxic conditions increased l -[3H]Glu uptake with a concomitant decrease in ATP content in slices. These results suggest that Cl-dependent l -Glu transport activity in synaptic membranes increases in ischemia- or hypoxia-induced brain energy failures.  相似文献   

16.
Abstract: A continuous enzyme-linked fluorometric assay was used for determining the characteristics for glutamate exocytosis from guinea-pig cerebrocortical synaptosomes. Ca2+-dependent release can be induced not only by K+, but also by the Na+ channel activator veratridine and the Ca2+ ionophore ionomycin. K+-induced release can be inhibited by the Ca2+ channel inhibitor verapamil. Sr2+ and Ba2+ substitute for Ca2+ in promoting K+-induced release. Agents that would be predicted to transform the transvesicular pH gradient into a membrane potential are without effect on glutamate release. However, the protonophore carbonylcy-anide p -trifluoromethoxyphenylhydrazone causes a time-dependent loss of exocytosis that is oligomycin insensitive and may be due to depletion of vesicular glutamate. The Ca2+-independent release of glutamate from the cytosol on depolarization is unchanged or promoted by metabolic inhibitors that lower the ATP/ADP ratio. In contrast, Ca2+-dependent release is ATP dependent and is blocked by the combined inhibition of oxidative phosphorylation and glycolysis.  相似文献   

17.
Abstract: GABA and the GABAB receptor agonist (−)-baclofen inhibited 4-aminopyridine (4AP)- and KCl-evoked, Ca2+-dependent glutamate release from rat cerebrocortical synaptosomes. The GABAB receptor antagonist CGP 35348, prevented this inhibition of glutamate release, but phaclofen had no effect. (−)-Baclofen-mediated inhibition of glutamate release was insensitive to 2 µg/ml pertussis toxin. As determined by examining the mechanism of GABAB receptor modulation of glutamate release, (−)-baclofen caused a significant reduction in 4AP-evoked Ca2+ influx into synaptosomes. The agonist did not alter the resting synaptosomal membrane potential or 4AP-mediated depolarization; thus, the inhibition of Ca2+ influx could not be attributed to GABAB receptor activation causing a decrease in synaptosomal excitability. Ionomycin-mediated glutamate release was not affected by (−)-baclofen, indicating that GABAB receptors in this preparation are not coupled directly to the exocytotic machinery. Instead, the data invoke a direct coupling of GABAB receptors to voltage-dependent Ca2+ channels linked to glutamate release. This coupling was subject to regulation by protein kinase C (PKC), because (−)-baclofen-mediated inhibition of 4AP-evoked glutamate release was reversed when PKC was stimulated with phorbol ester. This may therefore represent a mechanism by which inhibitory and facilitatory presynaptic receptor inputs interplay to fine-tune transmitter release.  相似文献   

18.
19.
Abstract: The σ ligand 1,3-di- O -tolylguanidine (DTG) increased basal dynamin and decreased depolarization-stimulated phosphorylation of the synaptosomal protein synapsin Ib without having direct effects on protein kinases or protein phosphatases. DTG dose-dependently decreased the basal cytosolic free Ca2+ concentration ([Ca2+]i) and blocked the depolarization-dependent increases in [Ca2+]i. These effects were inhibited by the σ antagonists rimcazole and BMY14802. The nitric oxide donors sodium nitroprusside (SNP) and 8-( p -chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate decreased basal [Ca2+]i and the KCl-evoked rise in [Ca2+]i to an extent similar to DTG. SNP, but not DTG, produced a rise in cyclic GMP levels, suggesting that the effect of DTG on [Ca2+]i was not mediated via downstream regulation of cyclic GMP levels. DTG increased 45Ca2+ uptake and efflux under basal conditions and inhibited the 45Ca2+ uptake induced by depolarization with KCl. The KCl-evoked rise in [Ca2+]i was inhibited by ω-conotoxin (ω-CgTx)-GVIA and -MVIIC but not nifedipine and ω-agatoxin-IVA. The effect of DTG on decreasing the KCl-evoked rise in [Ca2+]i was additive with ω-CgTx-MVIIC but not with ω-CgTx-GVIA. These data suggest that DTG was producing some of its effects on synapsin I and dynamin phosphorylation and intrasynaptosomal Ca2+ levels via inhibition of N-type Ca2+ channels.  相似文献   

20.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号