首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The 2-hydroxylated metabolites of estrone (E1) and estradiol (E2) were tested for their ability to induce an increase in the concentration of LH in the serum of the prepuberal male or female rat. Neither catechol estrogen was capable of inducing increases in the concentration of LH in the serum of rats of either sex, but E1 and E2 induced a surge in serum LH in the prepuberal female rats. It appears that, despite previous claims, the role that catechol estrogens might play in the control of phasic LH release is negligible.  相似文献   

4.
Thyrotropin-releasing hormone (TRH) was administered intracerebroventricularly and it's effects on respiration were evaluated in the alpha-chloralose anesthetized cat. Respiratory activity was measured using a Fleisch pneumotachograph to monitor tracheal airflow. TRH (0.28-28 nmol) caused an elevation in respiratory minute volume which was due to an increase in respiratory rate with no effect on tidal volume. The site of TRH-induced tachypnea was in the hindbrain as both injections into the cisterna magna and the fourth ventricle produced similar effects. No changes in respiratory activity were seen when TRH injection was restricted to the lateral and third ventricles (forebrain). Furthermore, systemic administration of TRH (28 nmol) produced no significant respiratory effects. The active analogue, [3-Me-His2]-TRH (2.7 nmol) produced the same respiratory effects as TRH. The inactive analogue, TRH free acid (28-280 nmol), caused no significant change in respiratory activity. The data suggest that TRH interacts with a specific receptor in the hindbrain of the cat to affect respiration.  相似文献   

5.
6.
7.
The effect of sham feeding on the plasma concentration of gastric inhibitory polypeptide (GIP) was studied in unrestrained rats bearing chronic gastric fistulas and jugular catheters. While no increase of plasma GIP concentration could be detected during sham feeding (fistula open), during normal feeding (fistula closed), plasma GIP concentrations rose rapidly. In contrast to GIP, plasma insulin concentrations showed a rapid and phasic response during sham feeding in the absence of changes of glycemia. In anesthetized rats electrical stimulation of the vagus nerve was without any effect on plasma GIP concentration, while plasma insulin increased rapidly by as much as 150 percent. It is concluded that under the conditions used, the full gastric and/or intestinal phases of food ingestion are necessary to trigger GIP release, and that vagal activation alone is unable to stimulate GIP release in the rat.  相似文献   

8.
Chronic administration of d, l isoproterenol, 0.2 – 5 mg/kg/day, for 14–21 days in the male rat produced marked increases in dry ventricle weight (21.1 – 43.6%; p < 0.001). In comparison, an α-adrenergic agonist, phenylephrine (7.5 mg/kg/day) decreased ventricle weight (?15.3%; p < 0.025). Also, isoproterenol injection at 5 mg/kg/day decreased cardiac actomyosin ATPase activity by 23.3% (p < 0.0025) while phenylephrine, administered as above, did not influence ATPase activity. The effect of isoproterenol on heart weight was completely blocked by the β1-adrenergic antagonist practolol (5 mg/kg/day). Albuterol, a relatively specific β2-adrenergic agonist was less potent than isoproterenol in producing cardiac hypertrophy. l-Epinephrine injection, 0.8 mg/kg/day for 14 days, had no effect on heart weight. However, l-epinephrine produced cardiac hypertrophy (22.4% p < 0.001) when the animals were preinjected with the α-adrenergic antagonist, phenoxybenzamine (5 mg/kg/day). The data indicate that cardiac hypertrophy can be produced by stimulation of the β1-adrenergic receptors of the heart; apparently, stimulation of α-adrenergic receptors opposes β-adrenergic hypertrophic effects.  相似文献   

9.
Electrical stimulation of afferent vagal fibres evoked a pressor response in rats after transection of the spinal cord. The pressor response was accounted for by an increased release of vasopressin because it was abolished by the intravenous injection of a vasopressin antagonist. Bilateral electrolytic lesions at the sites of the caudal ventrolateral medulla markedly reduced the pressor response to afferent vagal stimulation but not that to carotid occlusion. It is concluded that the area of the caudal ventrolateral medulla is involved in mediation of the vasopressin-induced pressor response to afferent vagal stimulation.  相似文献   

10.
The purpose of the present study was to examine the reflex effects of mechanical stimulation of intestinal visceral afferents on the pattern of respiratory muscle activation. In 14 dogs anesthetized with pentobarbital sodium, electromyographic activity of the costal and crural diaphragm, parasternal intercostal, and upper airway respiratory muscles was measured during distension of the small intestine. Rib cage and abdominal motion and tidal volume were also recorded. Distension produced an immediate apnea (11.16 +/- 0.80 s). During the first postapneic breath, costal (43 +/- 7% control) and crural (64 +/- 6% control) activity were reduced (P less than 0.001). In contrast, intercostal (137 +/- 11%) and upper airway muscle activity, including alae nasi (157 +/- 16%), genioglossus (170 +/- 15%), and posterior cricoarytenoid muscles (142 +/- 7%) all increased (P less than 0.005). There was greater outward rib cage motion although the abdomen moved paradoxically inward during inspiration, resulting in a reduction in tidal volume (82 +/- 6% control) (P less than 0.005). Postvagotomy distension produced a similar apnea and subsequent reduction in costal and crural activity. However, enhancement of intercostal and upper airway muscle activation was abolished and there was a greater fall in tidal volume (65 +/- 14%). In conclusion, mechanical stimulation of intestinal afferents affects the various inspiratory muscles differently; nonvagal afferents produce an initial apnea and subsequent depression of diaphragm activity whereas vagal pathways mediate selective enhancement of intercostal and upper airway muscle activation.  相似文献   

11.
12.
13.
14.
Expiratory effects of electrical stimulation of vagal afferents were studied in 12 kittens during the first week of life. Animals anesthetized with ketamine (30 mg/kg, im) and acepromazine (1.1 mg/kg, im), tracheostomized, and paralyzed were artificially ventilated after bilateral vagotomy. Rectified and "integrated" activity of the C5 root of phrenic nerve, systemic blood pressure, and the stimulus train were recorded. The optimal stimulus parameters for expiratory prolongation were chosen. The results varied between animals. We found three types of response: A, expiratory prolongation when stimulus was applied within the initial 80% of control expiratory time (TEc); beyond this delay, a decreased response or no effect was observed in four kittens; B, graded expiratory prolongation was recorded to the end of this phase in three kittens; and C, expiratory prolongation when stimulus delay was less than 40% of TEc and expiratory shortening when the stimulus given with greater delays was observed in one kitten. Nonsignificant effects were observed in the remaining four animals. Types A and B of response suggest activation of the slowly adapting pulmonary stretch receptors. However, amplitude of stimulus and frequency of pulses were higher than those used in adult animals. Type C response indicates that fibers from both rapidly and slowly adapting stretch receptors could be activated. Our results imply that if the expiratory insensitive phase is present in kittens, it can be affected by experimental conditions. This is in contradiction to characteristics of expiratory response to vagal stretch receptor input in adult cats.  相似文献   

15.
Ventilation and electromyogram (EMG) activities of the right hemidiaphragm, parasternal intercostal, triangularis sterni, transversus abdominis, genioglossus, and alae nasi muscles were measured before and during central stimulation of the left thoracic phrenic nerve in 10 alpha-chloralose anesthetized vagotomized dogs. Pressure in the carotid sinuses was fixed to maintain baroreflex activity constant. The nerve was stimulated for 1 min with a frequency of 40 Hz and stimulus duration of 1 ms at voltages of 5, 10, 20, and 30 times twitch threshold (TT). At five times TT, no change in ventilation or EMG activity occurred. At 10 times TT, neither tidal volume nor breathing frequency increased sufficiently to reach statistical significance, although the change in their product (minute ventilation) was significant (P less than 0.05). At 20 and 30 times TT, increases in both breathing frequency and tidal volume were significant. At these stimulus intensities, the increases in ventilation were accompanied by approximately equal increases in the activity of the diaphragm, parasternal, and alae nasi muscles. The increase in genioglossus activity was much greater than that of the other inspiratory muscles. Phrenic nerve stimulation also elicited inhomogeneous activation of the expiratory muscles. The transversus abdominis activity increased significantly at intensities from 10 to 30 times TT, whereas the activity of the triangularis sterni remained unchanged. The high stimulation intensities required suggest that the activation of afferent fiber groups III and IV is involved in the response. We conclude that thin-fiber phrenic afferent activation exerts a nonuniform effect on the upper airway, rib cage, and abdominal muscles and may play a role in the control of respiratory muscle recruitment.  相似文献   

16.
17.
18.
Previous studies have indicated that there is a cardiodepressant factor in the medium incubating the posterior pituitary lobe in situ. The cardiodepressant activity of the medium incubating the posterior pituitary lobe before and during stimulation of the vagus nerves was tested on isolated auricles of the right heart atrium of a two-day-old rat. It was found that the medium incubating the posterior pituitary lobe collected before stimulation decreased the contraction rate of the auricle by 34%, while that collected during the intermittent stimulation of the central ends of the cut vagus nerves caused a decrease of the auricle contractions frequency by 52%. The addition of cholinergic, serotoninergic, histaminergic receptor blockers or prostaglandin synthetase into Ringer-Lock's solution bathing the auricle has no effect on the changes of the contraction rate caused by the incubation medium.  相似文献   

19.
Several groups of ants display a reproductive cycle in which two phases of adult activity alternate in synchrony with the brood instars. The brood stimulation hypothesis (Schneirla, 1957) was developed for ecitonine army ants to explain the proximate control of such biphasic cycles. According to it, onsets of cyclic activities are triggered by social stimulations arising from the developing brood, rather than by innate pace-makers inbuilt in adult ants. While it seemed to provide an acceptable explanation, this hypothesis failed to be experimentally demonstrated, in spite of numerous field observations. We used colonies of thelytokous populations of the phasic ant Cerapachys biroi as a model in order to test the brood stimulation theory. Brood removal and substitution experiments allowed us to confirm, first, that the periodicity of the cycle is not controlled by an endogenous rhythm in adults. Moreover, we could also characterise the influence of each brood instar on the activity of adult ants. Although we confirmed the existence of a brood stimulation involved in the control of the cycle, experiments revealed that it was not performed accordingly to Schneirla’s hypothesis. In effect, our study suggests a primacy of larval influence: the foraging phase was triggered and sustained by larvae- induced excitement rather than by stimulation from the newly-emerged callows. Received 21 March 2005; revised 1 June 2005; accepted 6 june 2005.  相似文献   

20.
The beat-by-beat changes in atrioventricular (AV) conduction evoked by constant frequency and phase-coupled vagal stimulation were examined both qualitatively and quantitatively in 13 anesthetized dogs. The effects of pacing cycle length and sympathetic activity on the vagally induced phasic changes in AV conduction were also characterized. When the vagal stimulus interval was nearly equal to the pacing cycle length and the vagal stimulus moved progressively through the cardiac cycle, AV interval oscillated in a rhythmic fashion. The rhythmicity of the vagally induced AV interval oscillations was altered substantially by changes in either the vagal stimulus interval or the pacing cycle length. The vagally induced AV interval oscillations were abolished during phase-coupled vagal stimulation; however, the magnitude of the resultant steady-state AV interval depended on the time relative to the phase of the cardiac cycle that the vagal stimulus was delivered. In the presence or absence of sympathetic stimulation, a vagal stimulus falling approximately 200 ms prior to atrial depolarization evoked the greatest prolongation in AV interval, regardless of the pacing cycle length. Additionally, the effects of combined sympathetic and phase-dependent vagal stimulation on the AV interval were additive. These data confirm that the influence of a vagal stimulus on AV interval can be predicted from the phase in the cardiac cycle that the vagal stimulus is delivered. Moreover, this phase dependency of vagal effects evokes marked qualitative variations in AV interval response patterns when either the vagal stimulus interval or the pacing cycle length is altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号