共查询到20条相似文献,搜索用时 0 毫秒
1.
MHC class II molecules are pivotal for the adaptive immune system, because they guide the development and activation of CD4+ T helper cells. Fulfilling these functions requires that the genes encoding MHC class II molecules are transcribed according to a strict cell-type-specific and quantitatively modulated pattern. This complex gene-expression profile is controlled almost exclusively by a single master regulatory factor, which is known as the class II transactivator. As we discuss here, differential activation of the three independent promoters that drive expression of the gene encoding the class II transactivator ultimately determines the exquisitely regulated pattern of MHC class II gene expression. 相似文献
2.
Gourley TS Patel DR Nickerson K Hong SC Chang CH 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(9):4414-4419
The MHC class II transactivator (CIITA) is a critical regulator of MHC class II genes and other genes involved in the Ag presentation pathway. CIITA-deficient mice lack MHC class II expression on almost all APCs. In this study, we show that these mice also have aberrant Fas ligand expression on both CD4 T cells and B cells. We found that Fas ligand expression was greatly increased on CIITA-deficient CD4 T cells during the Th1 differentiation process. However, both CIITA-deficient and control Th1 effector cells up-regulated Fas ligand to similar levels if cells were reactivated. The introduction of CIITA into primary CD4 T cells via retroviral infection resulted in a reduction in the level of Fas ligand and delay in apoptosis after activation. Interestingly, activated B cells from the CIITA-deficient mice also showed increased levels of Fas ligand that could be to some degree inhibited by the introduction of IL-4. 相似文献
3.
4.
Modulation of gene expression by the MHC class II transactivator 总被引:6,自引:0,他引:6
The class II transactivator (CIITA) is a master regulator of MHC class II expression. CIITA also modulates the expression of MHC class I genes, suggesting that it may have a more global role in gene expression. To determine whether CIITA regulates genes other than the MHC class II and I family, DNA microarray analysis was used to compare the expression profiles of the CIITA expressing B cell line Raji and its CIITA-negative counterpart RJ2.2.5. The comparison identified a wide variety of genes whose expression was modulated by CIITA. Real time RT-PCR from Raji, RJ2.2.5, an RJ2.2.5 cell line complemented with CIITA, was performed to confirm the results and to further identify CIITA-regulated genes. CIITA-regulated genes were found to have diverse functions, which could impact Ag processing, signaling, and proliferation. Of note was the identification of a set of genes localized to chromosome 1p34-35. The global modulation of genes in a local region suggests that this region may share some regulatory control with the MHC. 相似文献
5.
6.
7.
G C Coutinho O Durieu-Trautmann A D Strosberg P O Couraud 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(8):2525-2529
The brain has been considered for a long time as an immunologically privileged site because of the lack of a true lymphatic system and the existence of several barriers that isolate it from the periphery. In the last few years, it became evident that cells in the central nervous system (astrocytes, microglial cells, and brain capillary endothelial cells) can be induced to express class II MHC and present Ag to T lymphocytes. The brain capillary endothelial cells, which are strategically located at the interface between blood and brain, could be involved in the initiation of immune responses within the brain parenchyma. We have previously characterized bovine brain capillary endothelial cells in culture and shown that they maintain in vitro a fully differentiated phenotype associated with the blood-brain barrier endothelium. In order to assess the role of these cells in the development of immune responses in the brain, we initiated the present study on the regulation of their class II MHC surface expression. Our data indicate that this expression on bovine brain capillary endothelial cells is inducible by IFN-gamma and further stimulated by catecholamines through activation of beta-adrenergic receptors. However, this latter effect is not mimicked by forskolin, theophylline, or dibutyryl-cAMP, suggesting the involvement of a cAMP-independent mechanism. 相似文献
8.
9.
10.
Histone deacetylation,but not hypermethylation,modifies class II transactivator and MHC class II gene expression in squamous cell carcinomas 总被引:1,自引:0,他引:1
Kanaseki T Ikeda H Takamura Y Toyota M Hirohashi Y Tokino T Himi T Sato N 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(10):4980-4985
11.
12.
13.
14.
15.
Stüve O Youssef S Slavin AJ King CL Patarroyo JC Hirschberg DL Brickey WJ Soos JM Piskurich JF Chapman HA Zamvil SS 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(12):6720-6732
The role of the MHC class II transactivator (CIITA) in Ag presentation by astrocytes and susceptibility to experimental autoimmune encephalomyelitis (EAE) was examined using CIITA-deficient mice and newly created transgenic mice that used the glial fibrillary acidic protein promoter to target CIITA expression in astrocytes. CIITA was required for class II expression on astrocytes. Like class II-deficient mice, CIITA-deficient mice were resistant to EAE by immunization with CNS autoantigen, although T cells from immunized CIITA-deficient, but not class II-deficient, mice proliferated and secreted Th1 cytokines. CIITA-deficient splenic APC presented encephalitogenic peptide to purified wild-type encephalitogenic CD4(+) T cells, indicating that CIITA-independent mechanisms can be used for class II-restricted Ag presentation in lymphoid tissue. CIITA-deficient mice were also resistant to EAE by adoptive transfer of encephalitogenic class II-restricted CD4(+) Th1 cells, indicating that CIITA-dependent class II expression was required for CNS Ag presentation. Despite constitutive CIITA-driven class II expression on astrocytes in vivo, glial fibrillary acidic protein-CIITA transgenic mice were no more susceptible to EAE than controls. CIITA-transfected astrocytes presented peptide Ag, but in contrast to IFN-gamma-activated astrocytes, they could not process and present native Ag. CIITA-transfected astrocytes did not express cathepsin S without IFN-gamma activation, indicating that CIITA does not regulate other elements that may be required for Ag processing by astrocytes. Although our results demonstrate that CIITA-directed class II expression is required for EAE induction, CIITA-directed class II expression by astrocytes does not appear to increase EAE susceptibility. These results do not support the role of astrocytes as APC for class II-restricted Ag presentation during the induction phase of EAE. 相似文献
16.
17.
Ilangumaran S Finan D La Rose J Raine J Silverstein A De Sepulveda P Rottapel R 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(9):5010-5020
Suppressor of cytokine signaling 1 (SOCS1) is rapidly induced following stimulation by several cytokines. SOCS1 negatively regulates cytokine receptor signal transduction by inhibiting Janus family tyrosine kinases. Lack of such feedback regulation underlies the premature death of SOCS1(-/-) mice due to unbridled IFN-gamma signaling. We used mouse embryo fibroblasts derived from SOCS1(-/-) mice to investigate the role of SOCS1 in IFN-gamma signaling pathways. SOCS1(-/-) fibroblasts were exquisitely sensitive to the IFN-gamma-mediated growth arrest and showed sustained STAT1 phosphorylation. However, SOCS1(-/-) fibroblasts were inefficient in MHC class II surface expression following IFN-gamma stimulation, despite a marked induction of the MHC class II transactivator and MHC class II gene expression. Retroviral transduction of wild-type SOCS1 relieved the growth-inhibitory effects of IFN-gamma in SOCS1(-/-) fibroblasts by inhibiting STAT1 activation. SOCS1R105K, carrying a mutation within the phosphotyrosine-binding pocket of the Src homology 2 domain, did not inhibit STAT1 phosphorylation, yet considerably inhibited IFN-gamma-mediated growth arrest. Strikingly, expression of SOCS1R105K restored the IFN-gamma-induced MHC class II expression in SOCS1(-/-) cells, indicating that expression of SOCS1 facilitates MHC class II expression in fibroblasts. Our results show that SOCS1, in addition to its negative regulatory role of inhibiting Janus kinases, has an unanticipated positive regulatory function in retarding the degradation of IFN-gamma-induced MHC class II proteins in fibroblasts. 相似文献
18.
19.
Abrogation of tumorigenicity by MHC class II antigen expression requires the cytoplasmic domain of the class II molecule 总被引:1,自引:0,他引:1
S Ostrand-Rosenberg C A Roby V K Clements 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(7):2419-2422
Transfection of syngeneic MHC class II genes into the lethal mouse SaI tumor abrogates the malignancy of the tumor in the autologous host, and protects the host against subsequent challenges with the wild type class II- tumor. We have hypothesized that the transfectants induce protective immunity by functioning as APC for tumor peptides, and stimulating tumor-specific Th cells. Recent in vitro studies suggest that Ag presentation by class II-restricted APC requires the cytoplasmic domain of the class II molecule, and may involve intracellular signaling via the cytoplasmic domain. To determine if the class II cytoplasmic domain is required for enhanced tumor-specific immunity, SaI mouse sarcoma cells were transfected with syngeneic Aak and Abk genes with truncated cytoplasmic domains. These transfectants are as malignant as wild type class II- SaI cells in autologous A/J mice. Stimulation of tumor-specific immunity by class II+ tumor cells is therefore dependent on the class II cytoplasmic region, and may involve intracellular signaling events. 相似文献