首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
丙型肝炎病毒丝氨酸蛋白酶在病毒复制和包装中的重要作用使其成为特异性抗病毒药物研究的首选靶标。根据丝氨酸蛋白酶晶体结构特点,用柔性连接子连接NS3丝氨酸蛋白酶结构域和NS4A的核心序列,构建成单链丝氨酸蛋白酶基因并且在大肠杆菌中获得高水平的可溶性表达,纯化后的目的蛋白能够切割重组蛋白底物NS5ab。随后,以单链丝氨酸蛋白酶为靶分子对噬菌体展示的随机十二肽库进行了三轮淘筛,挑选的44个克隆中有37个克隆能够特异性地结合丝氨酸蛋白酶,并且这种结合作用为竞争性ELISA试验结果所支持。对13个克隆进行序列测定,得到6种序列,它们在氨基酸组成上存在明显偏性,富含组氨酸和色氨酸,缺乏酸性氨基酸;6种序列存在一个共有序列。  相似文献   

2.
Hepatitis B and C viruses (HBV and HCV, respectively) are different and distinct viruses, but there are striking similarities in their disease potential. Infection by either virus can cause chronic hepatitis, liver cirrhosis, and ultimately, liver cancer, despite the fact that no pathogenetic mechanisms are known which are shared by the two viruses. Our recent studies have suggested that replication of either of these viruses upregulates a cellular protein called serine protease inhibitor Kazal (SPIK). Furthermore, the data have shown that cells containing HBV and HCV are more resistant to serine protease-dependent apoptotic death. Since our previous studies have shown that SPIK is an inhibitor of serine protease-dependent apoptosis, it is hypothesized that the upregulation of SPIK caused by HBV and HCV replication leads to cell resistance to apoptosis. The evasion of apoptotic death by infected cells results in persistent viral replication and constant liver inflammation, which leads to gradual accumulation of genetic changes and eventual development of cancer. These findings suggest a possibility by which HBV and HCV, two very different viruses, can share a common mechanism in provoking liver disease and cancer.Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are serious worldwide health problems, with more than 500 million people believed to be chronically infected with at least one of these viruses (36). HBV is a DNA virus belonging to the Hepadnaviridae family (21), while HCV is an RNA virus belonging to the Flaviviridae family (7). Despite the fact that they are two very different viruses, they share a common pathology in the ability to cause chronic hepatitis, liver cirrhosis, and ultimately, hepatocellular carcinoma (HCC) (34). It remains unclear why these two viruses, which are fundamentally so different, can both lead to similar disease states and the development of HCC.Numerous studies suggest that in chronic viral hepatitis, the host''s immune system is unable to clear infected cells (34). The persistent viral replication further stimulates liver inflammation, and prolonged inflammation and viral persistence result in a gradual accumulation of genetic changes which can subsequently lead to transformation and development of HCC (3, 13). It is possible that part of this failure of the host to clear infected cells results from an inability to induce apoptosis in these cells. For example, persistent HBV/HCV infection suppresses cytotoxic-T-lymphocyte (CTL)-induced apoptosis (3, 4). Apoptosis, or programmed cell death, plays a critical role in embryonic development, immune system function, and the overall maintenance of tissue homeostasis in multicellular organisms. It is also important in the host''s control of viral infection (4). The execution of the apoptotic program has traditionally been considered the result of the activation of a family of proteases known as caspases. Caspase-dependent cell apoptosis (CDCA) usually initiates by activating caspases 8 and 10 through proteolysis of their proenzymes, which further activates the executioner caspases, such as caspase 3 and caspase 7, resulting in the degradation of chromosomal DNA and cell death (28, 29). Recent evidence, however, has suggested that apoptotic cell death can also be promoted and triggered by serine proteases in a caspase-independent manner (5, 6, 39). Serine protease-dependent cell apoptosis (SPDCA) differs from CDCA in that serine proteases, not caspases, are critical to the apoptotic process (1, 6, 39). Interestingly, certain viral infections have been shown to induce SPDCA (27, 39).Failure of the immune-mediated removal of malignant cells through apoptosis may be due to the upregulation of apoptosis inhibitors in these cells (12, 18). We recently demonstrated that SPDCA can be inhibited by a small, 79-amino-acid protein called serine protease inhibitor Kazal (SPIK) (22). SPIK, which is also known as SPINK1, TATI (tumor-associated trypsin inhibitor), and PSTI (pancreas secretory trypsin inhibitor) (8, 24, 38), was first discovered in the pancreas as an inhibitor of autoactivation of trypsinogen (9). The expression of SPIK in normal tissue is limited or inactivated outside the pancreas, but expression of SPIK is elevated in numerous cancers, such as colorectal tumors, renal cell carcinoma, gastric carcinoma, and intrahepatic cholangiocarcinoma (ICC) (16, 19, 24, 31, 40, 41). It remains unknown, however, what role SPIK may play in cancer formation and development. Additionally, overexpression of SPIK was also found in HBV/HCV-infected human livers (32), and an even higher level of expression of SPIK was found in HBV/HCV-associated HCC tissue (19, 31). This implies that SPIK may be closely associated with hepatitis virus infection and development of HCC.Here we show direct evidence that HBV/HCV replication does in fact upregulate expression of the apoptosis inhibitor SPIK, resulting in resistance to SPDCA, which could ultimately lead to the development of chronic hepatitis and liver cancer.  相似文献   

3.
The emerging of hepatitis C virus (HCV) resistant strains has been considered as a main drawback of the available drugs. Since HCV has a large inactive surface, we would like to hypothesis that the mutation occur in HCV is minimal and causing less resistance against inhibition. In this study, a short peptide inhibitor of HCV namely plectasin was identified by HCV NS3-4A serine protease assay. Plectasin peptide showed considerable inhibition against HCV NS3-4A serine protease. Enzymatic activity of the recombinant NS3-4Apro was analysed by fluorescence release from several fluorogenic peptide substrates which resembling the dibasic cleavage site sequences of the flavivirus polyprotein precursor. Of all amc-labelled peptides, Pyr-RTKR-amc was the most efficiently cleaved substrate with the lowest Km value of 20 µM. The kinetic assay showed that plectasin peptide inhibited NS3-4Apro activity with an IC50 value of 4.3 μM compared to the aprotinin as a standard proteases inhibitor with an IC50 of 6.1 μM. From the results, plectasin peptide also demonstrated a dose-dependent inhibition of HCV replication with a considerable reduction in RLuc activity at 15 µM using HCV replicon- containing Huh-7 cells. Our study has identified a unique natural peptide that can be used to highlight novel structures for the development of drug derivatives with high efficacy of HCV NS3-4A protease inhibitors.  相似文献   

4.
Hepatitis C virus (HCV) nonstructural protein 2 (NS2) is required for HCV polyprotein processing and particle assembly. It comprises an N-terminal membrane domain and a C-terminal, cytosolically oriented protease domain. Here, we demonstrate that the NS2 protease domain itself associates with cellular membranes. A single charged residue in the second α-helix of the NS2 protease domain is required for proper membrane association, NS2 protein stability, and efficient HCV polyprotein processing.  相似文献   

5.
The nonstructural protein 3 (NS3) from the hepatitis C virus processes the non-structural region of the viral precursor polyprotein in infected hepatic cells. The NS3 protease activity has been considered a target for drug development since its identification two decades ago. Although specific inhibitors have been approved for clinical therapy very recently, resistance-associated mutations have already been reported for those drugs, compromising their long-term efficacy. Therefore, there is an urgent need for new anti-HCV agents with low susceptibility to resistance-associated mutations. Regarding NS3 protease, two strategies have been followed: competitive inhibitors blocking the active site and allosteric inhibitors blocking the binding of the accessory viral protein NS4A. In this work we exploit the intrinsic Zn+2-regulated plasticity of the protease to identify a new type of allosteric inhibitors. In the absence of Zn+2, the NS3 protease adopts a partially-folded inactive conformation. We found ligands binding to the Zn+2-free NS3 protease, trap the inactive protein, and block the viral life cycle. The efficacy of these compounds has been confirmed in replicon cell assays. Importantly, direct calorimetric assays reveal a low impact of known resistance-associated mutations, and enzymatic assays provide a direct evidence of their inhibitory activity. They constitute new low molecular-weight scaffolds for further optimization and provide several advantages: 1) new inhibition mechanism simultaneously blocking substrate and cofactor interactions in a non-competitive fashion, appropriate for combination therapy; 2) low impact of known resistance-associated mutations; 3) inhibition of NS4A binding, thus blocking its several effects on NS3 protease.  相似文献   

6.
The hepatitis C virus (HCV) nonstructural protein 2 (NS2) is a dimeric multifunctional hydrophobic protein with an essential but poorly understood role in infectious virus production. We investigated the determinants of NS2 function in the HCV life cycle. On the basis of the crystal structure of the postcleavage form of the NS2 protease domain, we mutated conserved features and analyzed the effects of these changes on polyprotein processing, replication, and infectious virus production. We found that mutations around the protease active site inhibit viral RNA replication, likely by preventing NS2-3 cleavage. In contrast, alterations at the dimer interface or in the C-terminal region did not affect replication, NS2 stability, or NS2 protease activity but decreased infectious virus production. A comprehensive deletion and mutagenesis analysis of the C-terminal end of NS2 revealed the importance of its C-terminal leucine residue in infectious particle production. The crystal structure of the NS2 protease domain shows that this C-terminal leucine is locked in the active site, and mutation or deletion of this residue could therefore alter the conformation of NS2 and disrupt potential protein-protein interactions important for infectious particle production. These studies begin to dissect the residues of NS2 involved in its multiple essential roles in the HCV life cycle and suggest NS2 as a viable target for HCV-specific inhibitors.An estimated 130 million people are infected with hepatitis C virus (HCV), the etiologic agent of non-A, non-B viral hepatitis. Transmission of the virus occurs primarily through blood or blood products. Acute infections are frequently asymptomatic, and 70 to 80% of the infected individuals are unable to eliminate the virus. Of the patients with HCV-induced chronic hepatitis, 15 to 30% progress to cirrhosis within years to decades after infection, and 3 to 4% of patients develop hepatocellular carcinoma (17). HCV infection is a leading cause of cirrhosis, end-stage liver disease, and liver transplantation in Europe and the United States (7), and reinfection after liver transplantation occurs almost universally. There is no vaccine available, and current HCV therapy of pegylated alpha interferon in combination with ribavirin leads to a sustained response in only about 50% of genotype 1-infected patients.The positive-stranded RNA genome of HCV is about 9.6 kb in length and encodes a single open reading frame flanked by 5′ and 3′ nontranslated regions (5′ and 3′ NTRs). The translation product of the viral genome is a large polyprotein containing the structural proteins (core, envelope proteins E1 and E2) in the N-terminal region and the nonstructural proteins (p7, nonstructural protein 2 [NS2], NS3, NS4A, NS4B, NS5A, and NS5B) in the C-terminal region. The individual proteins are processed from the polyprotein by various proteases. The host cellular signal peptidase cleaves between core/E1, E1/E2, E2/p7, and p7/NS2, and signal peptide peptidase releases core from the E1 signal peptide. Two viral proteases, the NS2-3 protease and the NS3-4A protease, cleave the remainder of the viral polyprotein in the nonstructural region (22, 27). The structural proteins package the genome into infectious particles and mediate virus entry into a naïve host cell; the nonstructural proteins NS3 through NS5B form the RNA replication complex. p7 and NS2 are not thought to be incorporated into the virion but are essential for the assembly of infectious particles (14, 36); however, their mechanisms of action are not understood.NS2 (molecular mass of 23 kDa) is a hydrophobic protein containing several transmembrane segments in the N-terminal region (5, 9, 32, 39). The C-terminal half of NS2 and the N-terminal third of NS3 form the NS2-3 protease (10, 11, 26, 37). NS2 is not required for the replication of subgenomic replicons, which span NS3 to NS5B (20). However, cleavage at the NS2/3 junction is necessary for replication in chimpanzees (16), the full-length replicon (38), and in the infectious tissue culture system (HCVcc) (14). Although cleavage can occur in vitro in the absence of microsomal membranes, synthesis of the polyprotein precursor in the presence of membranes greatly increases processing at the NS2/3 site (32). In vitro studies indicate that purified NS2-3 protease is active in the absence of cellular cofactors (11, 37). In addition to its role as a protease, NS2 has been shown to be required for assembly of infectious intracellular virus (14). The N-terminal helix of NS2 was first implicated in infectivity by the observation that an intergenotypic breakpoint following this transmembrane segment resulted in higher titers of infectious virus (28). Structural and functional characterization of the NS2 transmembrane region has shown that this domain is essential for infectious virus production (13). In particular, a central glycine residue in the first NS2 helix plays a critical role in HCV infectious virus assembly (13). The NS2 protease domain, but not its catalytic activity, is also essential for infectious virus assembly, whereas the unprocessed NS2-3 precursor is not required (13, 14).The crystal structure of the postcleavage NS2 protease domain (NS2pro, residues 94 to 217), revealed a dimeric cysteine protease containing two composite active sites (Fig. 2C; [21]). Two antiparallel α-helices make up the N-terminal subdomain, followed by an extended crossover region, which positions the β-sheet-rich C-terminal subdomain near the N-terminal region of the partner monomer. Two of the conserved residues of the catalytic triad (His 143, Glu 163) are located in the loop region after the second N-terminal helix of one monomer, while the third catalytic residue, Cys 184, is located in the C-terminal subdomain of the other monomer. Creation of this unusual pair of composite active sites through NS2 dimerization has been shown to be essential for autoproteolytic cleavage (21). The structure of NS2pro further demonstrated that the C-terminal residue of NS2 remains bound in the active site after cleavage, suggesting a possible mechanism for restriction of this enzyme to a single proteolytic event (21). Here we have used the crystal structure of NS2pro, along with sequence alignments, to target conserved residues in each of the NS2pro structural regions. Our mutational analysis revealed that the residues in the dimer crossover region and the C-terminal subdomain are important for infectious virus production. In contrast, the majority of amino acids in the active site pocket were not required for infectivity. Interestingly, we observed that the extreme C-terminal leucine of NS2 is absolutely essential for generation of infectious virus, as mutations, deletions, and extensions into NS3 are very poorly tolerated. This analysis begins to dissect the determinants of the multiple functions of this important protease in the HCV life cycle.  相似文献   

7.
根据丙型肝炎病毒 (HCV)丝氨酸蛋白酶晶体结构特点 ,设计并构建了一种新的单链型丝氨酸蛋白酶分子 .该分子由辅因子NS4A的核心序列、柔性连接子GSGS和NS3丝氨酸蛋白酶结构域组成 .利用设计的 3条引物 ,通过 2轮PCR获得单链丝氨酸蛋白酶基因 ,插入原核表达载体pQE30中 ,转化大肠杆菌M15 ,获得重组克隆 .经低剂量诱导和低温培养 ,目的基因获得高水平可溶表达 .以金属螯合层析法纯化的重组蛋白纯度达 95 %以上 .间接ELISA法检测 98份血清证实 ,该蛋白具有良好的抗原性和特异性 ;以重组蛋白底物NS5ab和单链丝氨酸蛋白酶建立了简便、实用的丝氨酸蛋白酶体外活性检测系统 ;以该系统观察了PMSF和EDTA对蛋白酶活性的影响 .结果表明 ,PMSF能够抑制蛋白酶的酶切活性 ,而EDTA不能抑制酶的活性 .单链型HCV丝氨酸蛋白酶的成功表达以及体外活性检测系统的建立 ,为丝氨酸蛋白酶抑制剂的研制奠定了物质基础 .  相似文献   

8.
9.
NEMO (NF-κB essential modulator) is a bridging adaptor indispensable for viral activation of interferon (IFN) antiviral response. Herein, we show that hepatitis A virus (HAV) 3C protease (3Cpro) cleaves NEMO at the Q304 residue, negating its signaling adaptor function and abrogating viral induction of IFN-β synthesis via the retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 (RIG-I/MDA5) and Toll-like receptor 3 (TLR3) pathways. NEMO cleavage and IFN antagonism, however, were lost upon ablation of the catalytic activity of 3Cpro. These data describe a novel immune evasion mechanism of HAV.  相似文献   

10.
目的:建立丙型肝炎病毒NS3/4A丝氨酸蛋白酶体内活性评价模型。方法:利用NS4A/B是NS3/4A丝氨酸蛋白酶作用底物的特性,构建融合基因NS3/NS4A/B-SEAP,底物片段NS4A/B插在NS3/4A和人分泌性碱性磷酸酶(SEAP)之间,融合基因表达后SEAP的分泌依赖于有活性的NS3/4A在NS4A/B位点的切割。将含融合基因的质粒NS3/4A(△4AB)SEAP通过水动力转染技术转染到小鼠体内,检测小鼠血清中SEAP的活性,高活性的SEAP是该评价体系成立的证据。结果与结论:在瞬时表达NS3/4A的小鼠血清中检测到了高活性的SEAP,建立了可用于评价抗NS3/4A的小鼠体内瞬时模型。  相似文献   

11.
Hepatitis C Virus (HCV) affects 3% of the world’s population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects. There is no HCV vaccine available. Thus, continued effort is required for developing a vaccine and better therapy. An HCV cell culture system is critical for studying various stages of HCV growth including viral entry, genome replication, packaging, and egress. In the current procedure presented, we used a wild-type intragenotype 2a chimeric virus, FNX-HCV, and a recombinant FNX-Rluc virus carrying a Renilla luciferase reporter gene to study the virus replication. A human hepatoma cell line (Huh-7 based) was used for transfection of in vitro transcribed HCV genomic RNAs. Cell-free culture supernatants, protein lysates and total RNA were harvested at various time points post-transfection to assess HCV growth. HCV genome replication status was evaluated by quantitative RT-PCR and visualizing the presence of HCV double-stranded RNA. The HCV protein expression was verified by Western blot and immunofluorescence assays using antibodies specific for HCV NS3 and NS5A proteins. HCV RNA transfected cells released infectious particles into culture supernatant and the viral titer was measured. Luciferase assays were utilized to assess the replication level and infectivity of reporter HCV. In conclusion, we present various virological assays for characterizing different stages of the HCV replication cycle.  相似文献   

12.
13.

Background

Both Schistosoma mansoni and Schistosoma haematobium cause schistosomiasis in sub-Saharan Africa. We assessed the diagnostic value of selected Schistosoma antigens for the development of a multiplex serological immunoassay for sero-epidemiological surveillance.

Methodology/Principal Findings

Diagnostic ability of recombinant antigens from S. mansoni and S. haematobium was assessed by Luminex multiplex immunoassay using plasma from school children in two areas of Kenya, endemic for different species of schistosomiasis. S. mansoni serine protease inhibitor (SERPIN) and Sm-RP26 showed significantly higher reactivity to patient plasma as compared to the control group. Sm-Filamin, Sm-GAPDH, Sm-GST, Sm-LAP1, Sm-LAP2, Sm-Sm31, Sm-Sm32 and Sm-Tropomyosin did not show difference in reactivity between S. mansoni infected and uninfected pupils. Sm-RP26 was cross-reactive to plasma from S. haematobium patients, whereas Sm-SERPIN was species-specific. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. ROC analysis for Sm-RP26, Sm-SERPIN and Sh-SERPIN showed AUC values of 0.833, 0.888 and 0.947, respectively. Using Spearman’s rank correlation coefficient analysis, we also found significant positive correlation between the number of excreted eggs and median fluorescence intensity (MFI) from the multiplex immunoassays for Sm-SERPIN (ρ = 0.430, p-value = 0.003) and Sh-SERPIN (ρ = 0.433, p-value = 0.006).

Conclusions/Significance

Sm-SERPIN is a promising species-specific diagnostic antigen. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. SERPINs showed correlation with the number of excreted eggs. These indicate prospects for inclusion of SERPINs in the multiplex serological immunoassay system.  相似文献   

14.
A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5′ noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.  相似文献   

15.
16.
Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state Pi release kinetics on single-stranded RNA and DNA substrates of different lengths. The parameters of stepping were determined from global fitting of the two types of kinetic measurements into a computational model that describes translocation as a sequence of coupled hydrolysis-stepping reactions. Our results show that the HCV helicase moves with a faster rate on single stranded RNA than on DNA. The HCV helicase steps on the RNA or DNA one nucleotide at a time, and due to imperfect coupling, not every ATP hydrolysis event produces a successful step. Comparison of the helicase domain (NS3h) with the protease-helicase (NS3-4A) shows that the most significant contribution of the protease domain is to improve the translocation stepping efficiency of the helicase. Whereas for NS3h, only 20% of the hydrolysis events result in translocation, the coupling for NS3-4A is near-perfect 93%. The presence of the protease domain also significantly reduces the stepping rate, but it doubles the processivity. These effects of the protease domain on the helicase can be explained by an improved allosteric cross-talk between the ATP- and nucleic acid-binding sites achieved by the overall stabilization of the helicase domain structure.  相似文献   

17.
Serine is encoded by two divergent codon types, UCN and AGY, which are not interchangeable by a single nucleotide substitution. Switching between codon types therefore occurs via intermediates (threonine or cysteine) or via simultaneous tandem substitutions. Hepatitis C virus (HCV) chronically infects 2 to 3% of the global population. The highly variable glycoproteins E1 and E2 decorate the surface of the viral envelope, facilitate cellular entry, and are targets for host immunity. Comparative sequence analysis of globally sampled E1E2 genes, coupled with phylogenetic analysis, reveals the signatures of multiple archaic codon-switching events at seven highly conserved serine residues. Limited detection of intermediate phenotypes indicates that associated fitness costs restrict their fixation in divergent HCV lineages. Mutational pathways underlying codon switching were probed via reverse genetics, assessing glycoprotein functionality using multiple in vitro systems. These data demonstrate selection against intermediate phenotypes can act at the structural/functional level, with some intermediates displaying impaired virion assembly and/or decreased capacity for target cell entry. These effects act in residue/isolate-specific manner. Selection against intermediates is also provided by humoral targeting, with some intermediates exhibiting increased epitope exposure and enhanced neutralization sensitivity, despite maintaining a capacity for target cell entry. Thus, purifying selection against intermediates limits their frequencies in globally sampled strains, with divergent functional constraints at the protein level restricting the fixation of deleterious mutations. Overall our study provides an experimental framework for identification of barriers limiting viral substitutional evolution and indicates that serine codon-switching represents a genomic “fossil record” of historical purifying selection against E1E2 intermediate phenotypes.  相似文献   

18.
以丙肝病毒 (HCV)为切入点 ,建立一套通过基因操作技术在体外细胞培养系统中生产高滴度反转录病毒颗粒的大规模病毒培养技术平台 ,并将该技术应用于其它难以体外大规模培养的反转录病毒的生产。该体系包括一株插入T7RNA聚合酶基因的重组痘苗病毒vTF 3和 2个重组质粒 ,质粒PT7HCV在上游T7启动子和T7终止子之间插入HCV基因组cDNA ,可通过T7RNA聚合酶指导转录产生 9 5kb的HCVRNA ;另一质粒P...  相似文献   

19.

Background

It has been hypothesized that persistent hepatitis C virus (HCV) infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4), composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation.

Methods

Human C4 was incubated with HCV nonstructural (NS) 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined.

Results

HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease–mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4.

Conclusions

C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.  相似文献   

20.
Hepatitis C virus (HCV) infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors – telaprevir, danoprevir, vaniprevir and MK-5172 – in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号