首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory syncytial virus (RSV) is a high priority target for vaccine development. One concern in RSV vaccine development is that a non-live virus vaccine would predispose for enhanced disease similar to that seen with the formalin inactivated RSV (FI-RSV) vaccine. Since a mAb specific to RSV G protein can reduce pulmonary inflammation and eosinophilia seen after RSV infection of FI-RSV vaccinated mice, we hypothesized that RSV G peptides that induce antibodies with similar reactivity may limit enhanced disease after subunit or other non-live RSV vaccines. In support of this hypothesis, we show that FI-RSV vaccinated mice administered RSV G peptide vaccines had a significant reduction in enhanced disease after RSV challenge. These data support the importance of RSV G during infection to RSV disease pathogenesis and suggest that use of appropriately designed G peptide vaccines to reduce the risk of enhanced disease with non-live RSV vaccines merits further study.  相似文献   

2.
The design of new antigens with both high immunogenic and safety properties is of particular interest to vaccine against infectious diseases. In the present study, we describe the synthesis and the refolding of peptide G20 derived from the Human Respiratory Syncytial Virus (hRSV) G-protein. G20 (MEF G140-190 G144-158) is a peptide of 69 amino acids with two disulfide bridges, which comprises multiple protective B-cell epitopes. It was deleted of the T helper cell epitope 184-198 of the RSV G-protein, which was found to induce pulmonary pathology after RSV challenge in mice. Interestingly, we showed in the present study that G20 generated a highly protective antibody response against RSV challenge in Balb/c mice. Therefore, G20 represents a new potential antigen for an RSV vaccine.  相似文献   

3.
The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8+ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.  相似文献   

4.
Respiratory Syncytial Virus (RSV) is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F) surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.  相似文献   

5.
用炭凝集试验(CAT)检测呼吸道合胞病毒(RSV),结果表明该法是一种简便、快速、特异的诊断方法。用CAT对16株RSV和8株其它病毒做试验,结果仅RSV凝集,而其它病毒均阴性。用该法与细胞培养法检测83份临床呼吸道感染幼儿鼻咽吸出物,结果CAT法阳性率为69.88%(53/83),细胞培养法为39.75%(33/83),两者阳性检出率相差极显著。阻断试验证明CAT是高度特异的。结果证明CAT具有较高的敏感性与特异性,可用于临床RSV标本的快速检测。  相似文献   

6.
Respiratory Syncytial Virus (RSV) is a major cause of viral brochiolitis in infants and young children and is also a significant problem in elderly and immuno-compromised adults. To date there is no efficacious and safe RSV vaccine, partially because of the outcome of a clinical trial in the 1960s with a formalin-inactivated RSV vaccine (FI-RSV). This vaccine caused enhanced respiratory disease upon exposure to the live virus, leading to increased morbidity and the death of two children. Subsequent analyses of this incident showed that FI-RSV induces a Th2-skewed immune response together with poorly neutralizing antibodies. As a new approach, we used reconstituted RSV viral envelopes, i.e. virosomes, with incorporated monophosphoryl lipid A (MPLA) adjuvant to enhance immunogenicity and to skew the immune response towards a Th1 phenotype. Incorporation of MPLA stimulated the overall immunogenicity of the virosomes compared to non-adjuvanted virosomes in mice. Intramuscular administration of the vaccine led to the induction of RSV-specific IgG2a levels similar to those induced by inoculation of the animals with live RSV. These antibodies were able to neutralize RSV in vitro. Furthermore, MPLA-adjuvanted RSV virosomes induced high amounts of IFNγ and low amounts of IL5 in both spleens and lungs of immunized and subsequently challenged animals, compared to levels of these cytokines in animals vaccinated with FI-RSV, indicating a Th1-skewed response. Mice vaccinated with RSV-MPLA virosomes were protected from live RSV challenge, clearing the inoculated virus without showing signs of lung pathology. Taken together, these data demonstrate that RSV-MPLA virosomes represent a safe and efficacious vaccine candidate which warrants further evaluation.  相似文献   

7.
Respiratory syncytial virus (RSV) causes respiratory disease in young children, the elderly, and immunocompromised individuals, often resulting in hospitalization and/or death. After more than 40 years of research, a Food and Drug Administration-approved vaccine for RSV is still not available. In this study, a chimeric bovine/human (b/h) parainfluenza virus type 3 (PIV3) expressing the human PIV3 (hPIV3) fusion (F) and hemagglutinin-neuraminidase (HN) proteins from an otherwise bovine PIV3 (bPIV3) genome was employed as a vector for RSV antigen expression with the aim of generating novel RSV vaccines. b/h PIV3 vaccine candidates expressing native or soluble RSV F proteins were evaluated for efficacy and immunogenicity in a nonhuman primate model. b/h PIV3 is suited for development of pediatric vaccines since bPIV3 had already been evaluated in clinical studies in 1- and 2-month-old infants and was found to be safe, immunogenic, and nontransmissible in a day care setting (Karron et al., Pediatr. Infect. Dis. J. 15:650-654, 1996; Lee et al., J. Infect. Dis. 184:909-913, 2001). African green monkeys immunized with b/h PIV3 expressing either the native or soluble RSV F protein were protected from challenge with wild-type RSV and produced RSV neutralizing and RSV F-protein specific immunoglobulin G serum antibodies. The PIV3-vectored RSV vaccines evaluated here further underscore the utility of this vector system for developing safe and immunogenic pediatric respiratory virus vaccines.  相似文献   

8.
Respiratory Syncytial Virus (RSV) is a frequent cause of hospital admission in young children and high risk babies such as premature newborns, or babies with underlying cardiac or pulmonary disease, or immunodeficiency. Outbreaks occur most frequently in the cold season in areas with temperate and Mediterranean climates. Aim of the "Osservatorio VRS" Study was to describe the time-related pattern of RSV epidemics in Italy, across four consecutive epidemics, from 2000 to 2004. Nasal specimens for RSV detection were obtained and tested by an immunoenzymatic test. A total of 2110 children were tested for RSV determination, the rate of children with RSV infection was 21%, and that of children hospitalized for RSV disease was 49%. Considering the whole study period, the RSV epidemics started in October-November and ended in May, showing a peak incidence in February, with a median of 28.1% and a maximum of 48.9%. Analysis of monthly distribution of each year of the study showed a biennial trend for an earlier appearance. A different epidemiological pattern of the infection was observed among the three national areas. In conclusion, even though the mechanism governing RSV infection periodicity remains unknown, its awareness in the absence of an RSV surveillance system as in Italy, may be useful for scheduling RSV prophylaxis and for hospital resource management.  相似文献   

9.
Human respiratory syncytial virus (RSV) is a serious respiratory pathogen in infants and young children as well as elderly and immunocompromised populations. However, no RSV vaccines are available. We have explored the potential of virus-like particles (VLPs) as an RSV vaccine candidate. VLPs composed entirely of RSV proteins were produced at levels inadequate for their preparation as immunogens. However, VLPs composed of the Newcastle disease virus (NDV) nucleocapsid and membrane proteins and chimera proteins containing the ectodomains of RSV F and G proteins fused to the transmembrane and cytoplasmic domains of NDV F and HN proteins, respectively, were quantitatively prepared from avian cells. Immunization of mice with these VLPs, without adjuvant, stimulated robust, anti-RSV F and G protein antibody responses. IgG2a/IgG1 ratios were very high, suggesting predominantly T(H)1 responses. In contrast to infectious RSV immunization, neutralization antibody titers were robust and stable for 4 months. Immunization with a single dose of VLPs resulted in the complete protection of mice from RSV replication in lungs. Upon RSV intranasal challenge of VLP-immunized mice, no enhanced lung pathology was observed, in contrast to the pathology observed in mice immunized with formalin-inactivated RSV. These results suggest that these VLPs are effective RSV vaccines in mice, in contrast to other nonreplicating RSV vaccine candidates.  相似文献   

10.
Respiratory Syncytial Virus is a frequent cause of severe bronchiolitis in children. To improve our understanding of systemic host responses to RSV, we compared BALB/c mouse gene expression responses at day 1, 2, and 5 during primary RSV infection in lung, bronchial lymph nodes, and blood. We identified a set of 53 interferon-associated and innate immunity genes that give correlated responses in all three murine tissues. Additionally, we identified blood gene signatures that are indicative of acute infection, secondary immune response, and vaccine-enhanced disease, respectively. Eosinophil-associated ribonucleases were characteristic for the vaccine-enhanced disease blood signature. These results indicate that it may be possible to distinguish protective and unfavorable patient lung responses via blood diagnostics.  相似文献   

11.
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract illness in infants and young children. It causes substantial morbidity and mortality in young children and older adults. As few therapeutic and prophylaxis options against RSV illness are currently available, there is a great need for effective RSV vaccines and immune-prophylaxis. Encouragingly, multiple vaccines and immuno-prophylaxis aiming to protect pediatric populations have shown promising progress in clinical trials. The three major preventive strategies include RSV F-protein-based vaccines for pregnant women, extended half-life monoclonal antibodies for neonates, and live-attenuated vaccines for infants. Each preventive strategy has its own merits and challenges yet to be overcome. Challenges also exist in maximizing vaccine impacts in the post-implementation era. This perspectives piece focuses on RSV preventive strategies in young children and highlights the remaining questions in current development of RSV immunization products and design of immunization programs.  相似文献   

12.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children and is responsible for as many as 199,000 childhood deaths annually worldwide. To support the development of viral therapeutics and vaccines for RSV, a human adult experimental infection model has been established. In this report, we describe the provenance and sequence of RSV Memphis-37, the low-passage clinical isolate used for the model''s reproducible, safe, experimental infections of healthy, adult volunteers. The predicted amino acid sequences for major proteins of Memphis-37 are compared to nine other RSV A and B amino acid sequences to examine sites of vaccine, therapeutic, and pathophysiologic interest. Human T- cell epitope sequences previously defined by in vitro studies were observed to be closely matched between Memphis-37 and the laboratory strain RSV A2. Memphis-37 sequences provide baseline data with which to assess: (i) virus heterogeneity that may be evident following virus infection/transmission, (ii) the efficacy of candidate RSV vaccines and therapeutics in the experimental infection model, and (iii) the potential emergence of escape mutants as a consequence of experimental drug treatments. Memphis-37 is a valuable tool for pre-clinical research, and to expedite the clinical development of vaccines, therapeutic immunomodulatory agents, and other antiviral drug strategies for the protection of vulnerable populations against RSV disease.  相似文献   

13.
The objective of this paper is to explain through the ecological hypothesis superinfection and competitive interaction between two viral populations and niche (host) availability, the alternating patterns of Respiratory Syncytial Virus (RSV) and influenza observed in a regional hospital in San Luis Potosí State, México using a mathematical model as a methodological tool. The data analyzed consists of community-based and hospital-based Acute Respiratory Infections (ARI) consultations provided by health-care institutions reported to the State Health Service Epidemiology Department from 2003 through 2009.  相似文献   

14.

Background

Illness associated with Respiratory Syncytial Virus (RSV) remains an unmet medical need in both full-term infants and older adults. The fusion glycoprotein (F) of RSV, which plays a key role in RSV infection and is a target of neutralizing antibodies, is an attractive vaccine target for inducing RSV-specific immunity.

Methodology and Principal Findings

BALB/c mice and cotton rats, two well-characterized rodent models of RSV infection, were used to evaluate the immunogenicity of intramuscularly administered RSV vaccine candidates consisting of purified soluble F (sF) protein formulated with TLR4 agonist glucopyranosyl lipid A (GLA), stable emulsion (SE), GLA-SE, or alum adjuvants. Protection from RSV challenge, serum RSV neutralizing responses, and anti-F IgG responses were induced by all of the tested adjuvanted RSV sF vaccine formulations. However, only RSV sF + GLA-SE induced robust F-specific TH1-biased humoral and cellular responses. In mice, these F-specific cellular responses include both CD4 and CD8 T cells, with F-specific polyfunctional CD8 T cells that traffic to the mouse lung following RSV challenge. This RSV sF + GLA-SE vaccine formulation can also induce robust RSV neutralizing titers and prime IFNγ-producing T cell responses in Sprague Dawley rats.

Conclusions/Significance

These studies indicate that a protein subunit vaccine consisting of RSV sF + GLA-SE can induce robust neutralizing antibody and T cell responses to RSV, enhancing viral clearance via a TH1 immune-mediated mechanism. This vaccine may benefit older populations at risk for RSV disease.  相似文献   

15.

Background

Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in young children worldwide, and no vaccine is currently available. Inactivated RSV vaccines tested in the 1960''s led to vaccine-enhanced disease upon viral challenge, which has undermined RSV vaccine development. RSV infection is increasingly being recognized as an important pathogen in the elderly, as well as other individuals with compromised pulmonary immunity. A safe and effective inactivated RSV vaccine would be of tremendous therapeutic benefit to many of these populations.

Principal Findings

In these preclinical studies, a mouse model was utilized to assess the efficacy of a novel, nanoemulsion-adjuvanted, inactivated mucosal RSV vaccine. Our results demonstrate that NE-RSV immunization induced durable, RSV-specific humoral responses, both systemically and in the lungs. Vaccinated mice exhibited increased protection against subsequent live viral challenge, which was associated with an enhanced Th1/Th17 response. In these studies, NE-RSV vaccinated mice displayed no evidence of Th2 mediated immunopotentiation, as has been previously described for other inactivated RSV vaccines.

Conclusions

These studies indicate that nanoemulsion-based inactivated RSV vaccination can augment viral-specific immunity, decrease mucus production and increase viral clearance, without evidence of Th2 immune mediated pathology.  相似文献   

16.
Zeng R  Zhang H  Hai Y  Cui Y  Wei L  Li N  Liu J  Li C  Liu Y 《Journal of virology》2012,86(8):4505-4517
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract disease in young children. In the 1960s, infants vaccinated with formalin-inactivated RSV developed a more severe disease characterized by excessive inflammatory immunopathology in lungs upon natural RSV infection. The fear of causing the vaccine-enhanced disease (VED) is an important obstacle for development of safe and effective RSV vaccines. The recombinant vaccine candidate G1F/M2 immunization also led to VED. It has been proved that cellular memory induced by RSV vaccines contributed to VED. Interleukin-27 (IL-27) and IL-23 regulate Th1, Th17, and/or Th2 cellular immune responses. In this study, mice coimmunized with pcDNA3-IL-27 and G1F/M2 were fully protected and, importantly, did not develop vaccine-enhanced inflammatory responses and immunopathology in lungs after RSV challenge, which was correlated with moderate Th1-, suppressed Th2-, and Th17-like memory responses activated by RSV. In contrast, G1F/M2- or pcDNA3-IL-23+G1F/M2-immunized mice, in which robust Th2- and Th17-like memory responses were induced, developed enhanced pulmonary inflammation and severe immunopathology. Mice coimmunized with G1F/M2 and the two cytokine plasmids exhibited mild inflammatory responses as well as remarkable Th1-, suppressed Th2-, and Th17-like memory responses. These results suggested that Th1-, Th2-, and Th17-like memory responses and, in particular, excessive Th2- and Th17-like memory responses were closely associated with VED; IL-27 may inhibit VED following respiratory syncytial virus infection by regulating cellular memory responses.  相似文献   

17.
Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV) is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs) are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.  相似文献   

18.
The Respiratory Syncytial Virus (RSV) fusogenic glycoprotein F(1) was characterized using biochemical and biophysical techniques. Two heptad-repeat (HR) regions within F(1) were shown to interact. Proteinase-K digestion experiments highlight the HR1 region (located proximal to the fusion peptide sequence) of the F(1) protein to which an HR2-derived (located proximal to the membrane-spanning domain) peptide binds, thus protecting both the protein and peptide from digestion. Solution-phase analysis of HR1-derived peptides shows that these peptides adopt helical secondary structure as measured by circular dichroism. Sedimentation equilibrium studies indicate that these HR1 peptides self-associate in a monomer/trimer equilibrium with an association constant of 5.2 x 10(8) M(-2). In contrast, HR2-derived peptides form random monomers in solution. CD analysis of mixtures containing peptides from the two regions demonstrate their propensity to interact and form a very stable (T(m) = 87 degrees C), helical (86% helicity) complex comprised of three HR1 and three HR2 members.  相似文献   

19.
The human metapneumovirus (hMPV) was first isolated in 2001 in the Netherlands (Van der Hoogen and collaborators) from a nasopharyngeal aspirate sampled from an infant. Based on the morphological, biochemical and genetic characteristics, the hMPV was initially classified in the genus Metapneumovirus with the avian metapneumovirus (APV), the agent causing the respiratory infections of the upper tract in turkeys and other birds. Subsequently, together with the respiratory syncytial virus (RSV), it was classified in the Pneumovirus genus which is a part of the Pneumovirinae subfamily, the Paramyxoviridae family. The aim of the present study was to optimize hMPV molecular detection and to detect the virus in samples form children with respiratory infections in Romania. Two types of RTPCR commercial kits were evaluated for the detection of hMPV. Tests were performed on 28 pharyngeal exudates from children aged from 9 months to 6 years, which were negative for influenza viruses and for Respiratory Syncytial Virus (RSV). Among the tested samples 7 (25%) have been positive for hMPV by RT-PCR. These results document for the first time that hMPV is circulating in Romania and causes respiratory infections, especially in newborns and children under 6 years old.  相似文献   

20.
Respiratory Syncytial Virus (RSV) is one of the most common causes of lower respiratory tract infections in young children, immunocompromised patients (children and adults), patients with chronic respiratory diseases and elderly people. Reinfections occur throughout the life, but the severity of disease decreased with subsequent infection. The aim of this study was to analyze the frequency of RSV infections in two selected subpopulations: young children (below 5 y.) and adults with chronic respiratory diseases (25-87 y.). Nasopharyngeal swabs (334) collected from October 2008 to March 2010 were examined. The presence of RSV genome was determined by RT-PCR and the presence of RSV antigen by quick immunochromatographic test. Positive results of RT-PCR were found in 45.2% of all swabs: 48.6% samples in 2008; 41.5% in 2009; 50.8% in 2010. The highest frequency of RSV-positive samples was in fall-winter months, but differences in RSV epidemic seasons were found. In the first season (2008-2009) an increased number of RSV infections was observed from November 2008, but in the second season--from January 2010. Generally, the frequency of RSV-positive RT-PCR among children was 53%, among adults 25%. The highest difference was observed in the first three-month period of 2010. RT-PCR positive samples were found in 68.5% of children and 5.9% of adults. However, the RSV antigen was found in 44.4% of samples collected from adults in this period. Our results indicate that the contribution of RSV infections during epidemic season of respiratory tract infections in Poland was really high among children and adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号