首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Experimental animal and peripheral blood cell studies point to guanine nucleotide regulatory (G) protein disturbances in bipolar affective disorder. We have previously reported elevated prefrontal cortex Gsα protein in bipolar affective disorder and have now extended these preliminary observations in a larger number of subjects, assessing the brain regional specificity of these changes in greater detail, determining the functional biochemical correlates of such changes, and evaluating their diagnostic specificity. Membrane G protein (Gsα, Giα, Goα, and Gβ) immunoreactivities were estimated by western blotting in postmortem brain regions obtained from 10 patients with a DSMIII-R diagnosis of bipolar affective disorder and 10 nonpsychiatric controls matched on the basis of age, postmortem delay, and brain pH. To examine whether there were functional correlates to the observed elevated Gsα levels, basal and GTPγS-and forskolin-stimulated cyclic AMP production was determined in the same brain regions. Compared with controls, Gsα (52-kDa species) immunoreactivity was significantly (p < 0.05) elevated in prefrontal (+36%), temporal (+65%), and occipital (+96%) cortex but not in hippocampus (+28%), thalamus (-23%), or cerebellum (+21%). In contrast, no significant differences were found in the other G protein subunits (Giα, Goα, Gβ) measured in these regions. Forskolin-stimulated cyclic AMP production was significantly increased in temporal (+31%) and occipital (+96%) cortex but not in other regions. No significant differences were apparent in basal or GTPγS-stimulated cyclic AMP production. A significant correlation (r= 0.60, p < 0.001) was observed between forskolin-stimulated cyclic AMP formation and Gsα (52 kDa) immunoreactivity when examined across these cortical regions. The observed increase in Gsα may be specific to bipolar disorders as no significant differences were detected in Gsα levels in temporal cortex from patients with either schizophrenia (n = 7) or Alzheimer's disease (n = 7). In summary, the present study confirms and extends our earlier findings and supports the notion that increased Gsα levels and possibly Gsα-adenylyl cyclase-mediated signal transduction are relevant to the pathophysiology of bipolar affective disorder.  相似文献   

2.
Abstract: Comparisons of the activity of the G protein-mediated phosphoinositide signal transduction system and of G protein levels were made in two regions of frontal cortex from eight schizophrenic, alcohol-dependent, and control subjects. G protein-mediated phosphoinositide hydrolysis was measured by stimulating cortical membranes incubated with [3H]phosphatidylinositol with 0.3–10 µM guanosine 5′-O-(3-thio)triphosphate (GTPγS). In frontal cortex areas 8/9, GTPγS-induced phosphoinositide hydrolysis was 50% greater in schizophrenic than control or alcohol-dependent subjects, whereas there were no differences among these groups of subjects in the response to GTPγS in frontal cortex area 10. Agonists for dopaminergic, cholinergic, purinergic, serotonergic, histaminergic, and glutamatergic receptors coupled to the phosphoinositide signaling system increased [3H]phosphatidylinositol hydrolysis in a GTPγS-dependent manner. Responses to most agonists were similar in all three subject groups in both cortical regions, with the largest difference being a 40% greater response to dopaminergic receptor stimulation in frontal cortex 8/9 from schizophrenic subjects. Measurements of the levels of phospholipase C-β, and of α-subunits of Gq, Go, Gi1, Gi2, and Gs, made by immunoblot analyses revealed no differences among the groups of subjects except for increased Gαo in schizophrenic subjects and increased Gαo and Gαi1 in alcohol-dependent subjects. These results demonstrate that schizophrenia is associated with increased activity of the phosphoinositide signal transduction system and increased levels of Gαo, whereas the phosphoinositide system was unaltered in alcohol dependence, but Gαo and Gαi1 were increased.  相似文献   

3.
Prokineticin 1 (pk1) and prokineticin 2 (pk2) interact with two structurally related G-protein coupled receptors, prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). Cellular signalling studies show that the activated receptors can evoke Ca2+-mobilization, pertussis toxin-sensitive ERK phosphorylation, and intracellular cAMP accumulation, which suggests the partecipation of several G protein subtypes, such as Gq/11, Gi/o and Gs. However, direct interactions with these transduction proteins have not been studied yet. Here we measured by bioluminescence resonance energy transfer (BRET) the association of PKR1 and PKR2 with different heterotrimeric Gα proteins in response to pk1 and pk2 activation. Using host-cell lines carrying gene deletions of Gαq/11 or Gαs, and pertussis toxin treatment to abolish the receptor interactions with Gαi/o, we determined that both receptors could couple with comparable efficiency to Gq/11 and Gi/o, but far less efficiently to Gs or other pertussis toxin-insensitive G proteins. We also used BRET methodology to assess the association of prokineticin receptors with β-arrestin isoforms. Fluorescent versions of the isoforms were transfected both in HEK293 cells and in double KO β-arrestin 1/2 mouse fibroblasts, to study receptor interaction with the reconstituted individual β-arrestins without background expression of the endogenous genes. Both receptors formed stable BRET-emitting complexes with β-arrestin 2 but not with β-arrestin 1, indicating strong selectivity for the former. In all the studied transducer interactions and in both receptors, pk2 was more potent than pk1 in promoting receptor binding to transduction proteins.  相似文献   

4.
Abstract: Guanine nucleotide binding proteins (G proteins) have been implicated in the pathophysiology of bipolar affective disorder. In the present investigation receptor-mediated G protein activation and changes in G protein trimeric state were examined in frontal cortical membranes obtained from postmortem brains of bipolar affective disorder subjects and from age-, sex-, and postmortem interval-matched controls. Stimulation of cortical membranes with serotonin, isoproterenol, or carbachol increased guanosine 5′-O-(3-[35S]thiophosphate) ([35S]GTPγS) binding to specific Gα proteins in a receptor-selective manner. The abilities of these receptor agonists to stimulate the binding of [35S]GTPγS to the Gα proteins was enhanced in membranes from bipolar brains. Immunoblot analyses showed increases in the levels of membrane 45- and 52-kDa Gαs proteins but no changes in the amounts of Gαi, Gαo, Gαz, Gαq/11, or Gβ proteins in membrane or cytosol fractions of bipolar brain homogenates. Pertussis toxin (PTX)-activated ADP-ribosylations of Gαi and Gαo were enhanced by ~80% in membranes from bipolar compared with control brains, suggesting an increase in the levels of the trimeric state of these G proteins in bipolar disorder. Serotonin-induced, magnesium-dependent reduction in PTX-mediated ADP-ribosylation of Gαi/Gαo in cortical membranes from bipolar brains was greater than that observed in controls, providing further evidence for enhanced receptor-G protein coupling in bipolar brain membranes. In addition, the amounts of Gβ proteins that coimmunoprecipitated with the Gα proteins were also elevated in bipolar brains. The data show that in bipolar brain membrane there is enhanced receptor-G protein coupling and an increase in the trimeric state of the G proteins. These changes may contribute to produce exaggerated transmembrane signaling and to the alterations in affect that characterize bipolar affective disorder.  相似文献   

5.
The involvement of multiple G-proteins in parathyroid hormone regulation of acid production was demonstrated in a highly enriched osteoclast population. Osteoclasts were isolated from the endosteum of 2.5 to 3-week-old chicken tibia using sequential enzymatic digestion. Single cell analysis of acid production was accomplished using microscope photometry and vital staining with acridine orange, a hydrogen ion concentration sensitive fluorescent dye. Lithium chloride, an uncoupler of G-proteins from their respective receptors, blocked parathyroid hormone stimulated production of acid. Cholera toxin, which permanently activates Gs-proteins, mimicked PTH stimulation. Pertussis toxin, which prevents receptor interaction with Gi- and Go-proteins, blocked both 10 8 M and 10 11 M PTH stimulated acid production, suggesting that the pertussis toxin-sensitive G-protein is utilized at both PTH concentrations. Immunoblots of osteoclast plasma membrane proteins, using a panel of antibodies generated against specific G-protein α subunits, revealed a 48 kDa Gsα, a 41 Goα, a 34 kDa Giα-3, and a unique 68 kDa Gα subunit, with the 41 kDa and 34 kDa bands being the most intense. Immunoblots of osteoblast plasma membrane proteins had a substantially different profile with the most intense bands being a Gsα (48 kDa) and a Goα (36 and 38 kDa). The studies suggest the utilization of at least two different G-proteins in the parathyroid hormone regulation of acid formation by osteoclasts, a Gs and a pertussis toxin-sensitive G-protein (Go and/or Giα-3). J. Cell. Biochem. 64:161–170. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Abstract: Western blot analysis, using subtype-specific anti-G protein antibodies, revealed the presence of the following G protein subunits in human neuroblastoma SH- SY5Y cells: Gaα, Giα1, Gjα2, Gcα, Gzα, and Gβ. Differentiation of the cells by all-trans-retinoic acid (RA) treatment (10 μmol/L; 6 days) caused substantial alterations in the abundance of distinct G protein subunits. Concomitant with an enhanced expression of μ-opioid binding sites, the levels of the inhibitory G proteins Giα1 and Gjα1 were found to be significantly increased. This coordinate up-reg- ulation is accompanied by functional changes in μ-opioid receptor-stimulated Iow-Km GTPase, μ-receptor-mediated adenylate cyclase inhibition, and receptor-independent guanosine 5′-(βγ-imido)triphosphate [Gpp(NH)p; 10 nmol/ L]-mediated attenuation of adenylate cyclase activity. In contrast, increased levels of inhibitory G proteins had no effect on muscarinic cholinergic receptor-mediated adenylate cyclase inhibition. With respect to stimulatory receptor systems, a reciprocal regulation was observed for prosta- glandin E1 (PGE1) receptors and Gsα, the G protein subunit activating adenylate cyclase. RA treatment of SH-SY5Y cells increases both the number of PGE1 binding sites and PGE1 stimulated adenylate cyclase activity, but significantly reduced amounts of Gzα were found. This down- regulation is paralleled by a decrease in the stimulatory activity of Gzα as assessed in S49 cyc- reconstitution assays. However, the reduction in Gaα levels had no effect on both intrinsic and receptor-independent-activated [Gpp(NH)p or forskolin; 100 μtmol/L each] adenylate cyclase, suggesting that the amount of Gzα is in excess over the functional capacity of adenylate cyclase in SH-SY5Y cell membranes. Additional quantitative changes were found for Gzα, Gcα, and Gβ subunits. In contrast, neuronal differentiation in the presence of 12-O-tetradecanoylphor- bol 13-acetate (16 nmol/L; 6 days) failed to affect G protein abundance. Our results provide evidence for a specific RA effect on the abundance of distinct G protein sub- units in human SH-SY5Y neuroblastoma cells. These alterations might contribute to functional changes in transmembrane signaling pathways associated with RA-in- duced neuronal differentiation of the cells.  相似文献   

7.
8.
Abstract

To identify the G proteins involved in the function of human substance P receptor (hSPR), the receptor was expressed in Sf9 cells using the baculovirus expression system. Maximal hSPR expression was up to 65 pmol/mg membrane protein. The following data indicated that hSPR in Sf9 membranes is coupled to endogenous G proteins: 1) binding of agonist radioligand [125I]BHSP to the receptor was sensitive to guanine nucleotides; and 2) stimulation of the receptor increased [35S]GTPγS binding. The hSPR-associated G proteins were identified by photoaffinity labeling with [α-32P]-azidoanilido GTP ([α-32P]AAGTP), followed by immunoprecipitation of the labeled G proteins with antibodies specific for various Gα-subunits. These experiments showed that stimulation of hSPR in Sf9 membranes activated multiple endogenous G proteins including Gαo, Gαq/11, and Gα. While hSPR's ability to associate with Gq/11 is well-documented, the present study provides the first evidence of hSPR's potential to activate Gαo and Gαs.  相似文献   

9.
We have isolated from the olfactory organ of the American lobster (Homarus americanus) two cDNA clones with homology to β subunits of G proteins. LobGβ1 contained a complete open reading frame that predicted an amino acid sequence with >80% identity to Gβ sequences from other species. LobGβ2 was a fragment of an open reading frame whose predicted amino acid sequence had 65–69% identity to other Gβ sequences. LobGβ2 mRNA was not detectable in the brain, eye plus eyestalk, leg, dactyl, olfactory organ, or tail muscle. In contrast, lobGβ1 was expressed in all these tissues as a single mRNA species of 6.4 kb and a protein of 37 kD. In the brain and olfactory organ, Gβ immunoreactivity was almost exclusively confined to neurites: the neuropil regions of the brain and the outer dendrites of the olfactory receptor neurons. Coimmunoprecipitation revealed that lobster Gβ interacted with both Gαs and Gαq. LobGβ1 is likely to be involved in a wide range of signaling events including olfactory transduction and synaptic transmission in the brain. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 525–536  相似文献   

10.
Previous investigations have demonstrated that both Gs- and the Gi-family of GTP-binding proteins are implicated in differentiation of the 3T3-L1 preadipocyte. In order to further analyze the role of Gsα vs. Gi2α, which are both involved in adenylate cyclase modulation, we transfected undifferentiated 3T3-L1 cells with two sets of G-protein cDNA: the pZEM vector with either wild type, the activating (i.e., GTP-ase inhibiting) R201C-Gsα or the inactivating G226A(H21a)-Gsα point mutations, or the pZIPNeoSV(X) retroviral vector constructs containing the Gi2α wild type or the missense mutations R179E-Gi2α, Q205L-Gi2α, and G204A(H21a)-Gi2α. The activating [R201C]Gsα-mutant did not significantly affect the differentiation process, i.e., increase in the steady-state levels of G-protein subunits, gross appearance, or insulin-elicited deoxy-glucose uptake into 3T3-Ll adipocytes, despite a marked initial increase in hormone-elicited adenylate cyclase activity. The [H21a]Gsα-mutant, on the other hand, enhanced the degree of differentiation slightly, as evidenced by an augmented production of lipid vesicles and insulin-stimulated deoxy-glucose uptake. However, an expected increase in mRNA for hormone-sensitive lipase was not seen. Secondly, it appeared that both activating [R179E]Gi2α or [Q205L]Gi2α mutants reduced cell doubling time in non-confluent 3T3-L1 cell cultures, while [H21a]Gi2α slowed proliferation rate. Furthermore, it seemed that cell proliferation, as evidenced by thymidine incorporation, ceased at a much earlier stage prior to cell confluency when cultures were transfected with the [R179E]Gi2α or [Q205L]Gi2α mutants. Upon differentiation with insulin, dexamethasone, and iBuMeXan, the following cell characteristics emerged: the [R179E]Gi2α and [Q205L]Gi2α mutants consistently enhanced adenylate cyclase activation and cAMP accumulation stimulated by isoproterenol and corticotropin over controls. Deoxy-glucose uptake was also super-activated by the [R179E]Gi2α and [Q205L]Gi2α mutants. Finally, steady-state levels of hormone sensitive lipase mRNA were dramatically increased by [R179E]Gi2α and [Q205L]Gi2α over differentiated controls. The inactivating [H21a]Gi2α-mutant obliterated all signs of preadipocyte differentiation. It is concluded that Gi2 plays a positive and much more important role than Gs in 3T3-L1 preadipocyte differentiation. Cyclic AMP appears to play no role in this process. J. Cell. Biochem. 64:242–257. © 1997 Wiley-Liss, Inc.  相似文献   

11.
12.
13.
Abstract

Site specific antisera against a synthetic peptide corresponding to the sequence 3–17 of Gαi2 have been raised and the specificity examined using purified homogeneous Go, Gi2 and Gi containing a 41 kDa α-subunit. The distribution of Gαi2 was investigated in plasma membranes from different tissues and cells and compared to the distribution of Gαo and other pertussis toxin sensitive Gα. Considerable amounts of Gαio were found in endocrine tissue especially in membranes from the adrenal and thyroid, in leucocytes and platelets where it constitutes the major, if not only, pertussis toxin-sensitive Gα, as well as in some cell lines (C6, NG 108–15, S49 cyc?); erythrocytes contained a 41 kDa Gαi which was different from Gαo. Gαo was present abundantly in nervous tissue, adrenal medulla and cortex but also found in low amounts in other membranes except for lung, liver and blood cells. Subcellular fractionaltion of cardiac ventricular muscle demonstrated the presence of Gαo and low amounts of Gαi2 in sarcolemma, but only 41kDa Gαi was present in sarcoplasmic reticulum. The importance of the distinct distribution in terms of signal transduction is discussed.  相似文献   

14.
Abstract: The identities of heterotrimeric G proteins that can interact with the μ-opioid receptor were investigated by α-azidoanilido[32P]GTP labeling of α subunits in the presence of opioid agonists in Chinese hamster ovary (CHO)-MORIVA3 cells, a CHO clone that stably expressed μ-opioid receptor cDNA (MOR-1). This clone expressed 1.01 × 106μ-opioid receptors per cell and had higher binding affinity and potency to inhibit adenylyl cyclase for the μ-opioid-selective ligands [d -Ala2,N-MePhe4,Gly-ol]-enkephalin and [N-MePhe3,d -Pro4]-morphiceptin, relative to the δ-selective opioid agonist [d -Pen2,d -Pen5]-enkephalin or the κ-selective opioid agonist U-50,488H. μ-Opioid ligands induced an increase in α-azidoanilido[32P]GTP photoaffinity labeling of four Gα subunits in this clone, three of which were identified as Gi3α, Gi2α, and Go2α. The same pattern of simultaneous interaction of the μ-opioid receptor with multiple Gα subunits was also observed in two other clones, one expressing about three times more and the other 10-fold fewer receptors as those expressed in CHO-MORIVA3 cells. The opioid-induced increase of labeling of these G proteins was agonist specific, concentration dependent, and blocked by naloxone and by pretreatment of these cells with pertussis toxin. A greater agonist-induced increase of α-azidoanilido[32P]GTP incorporation into Gi2α (160–280%) and Go2α (110–220%) than for an unknown Gα (G?α) (60%) or Gi3α (40%) was produced by three different μ-opioid ligands tested. In addition, slight differences were also found between the ability of various μ-opioid agonists to produce half-maximal labeling (ED50) of any given Gα subunit, with a rank order of Gi3α > Go2α > Gi2α = G?α. In any case, these results suggest that the activated μ-opioid receptor couples to four distinct G protein α subunits simultaneously.  相似文献   

15.
G protein-coupled receptors (GPCRs) are regulated by multiple families of kinases including GPCR kinases (GRKs). GRK4 is constitutively active towards GPCRs, and polymorphisms of GRK4γ are linked to hypertension. We examined, through co-immunoprecipitation, the interactions between GRK4γ and the Gα and Gβ subunits of heterotrimeric G proteins. Because GRK4 has been shown to inhibit Gαs-coupled GPCR signaling and lacks a PH domain, we hypothesized that GRK4γ would interact with active Gαs, but not Gβ. Surprisingly, GRK4γ preferentially interacts with inactive Gαs and Gβ to a greater extent than active Gαs. GRK4γ also interacts with inactive Gα13 and Gβ. Functional studies demonstrate that wild-type GRK4γ, but not kinase-dead GRK4γ, ablates isoproterenol-mediated cAMP production indicating that the kinase domain is responsible for GPCR regulation. This evidence suggests that binding to inactive Gαs and Gβ may explain the constitutive activity of GRK4γ towards Gαs-coupled receptors.  相似文献   

16.
《Journal of molecular biology》2019,431(17):3302-3311
RGS6 and RGS7 are regulators of G protein signaling (RGS) proteins that inactivate heterotrimeric (αβγ) G proteins and mediate diverse biological functions, such as cardiac and neuronal signaling. Uniquely, both RGS6 and RGS7 can discriminate between Gαo and Gαi1—two similar Gα subunits that belong to the same Gi sub-family. Here, we show that the isolated RGS domains of RGS6 and RGS7 are sufficient to achieve this specificity. We identified three specific RGS6/7 “disruptor residues” that can attenuate RGS interactions toward Gα subunits and demonstrated that their insertion into a representative high-activity RGS causes a significant, yet non-specific, reduction in activity. We further identified a unique “modulatory” residue that bypasses this negative effect, specifically toward Gαo. Hence, the exquisite specificity of RGS6 and RGS7 toward closely related Gα subunits is achieved via a two-tier specificity system, whereby a Gα-specific modulatory motif overrides the inhibitory effect of non-specific disruptor residues. Our findings expand the understanding of the molecular toolkit used by the RGS family to achieve specific interactions with selected Gα subunits—emphasizing the functional importance of the RGS domain in determining the activity and selectivity of RGS R7 sub-family members toward particular Gα subunits.  相似文献   

17.
Corticotropin-releasing factor (CRF) receptors have been demonstrated to be widely expressed in the central nervous system and in many peripheral tissues of mammalians. However, it is still unknown whether CRF receptors will function in cerebellar Purkinje neurons. In the present study, we investigated the expression profile of CRF receptors in rat cerebellum and identified a novel functional role of CRFR2 in modulating Purkinje neuron P-type Ca2+ currents (P-currents). We found that CRFR2α mRNA, but not CRFR1 and CRFR2β, was endogenously expressed in rat cerebellum. Activation of CRFR2 by UCN2 inhibited P-currents in a concentration-dependent manner (IC50 ~ 0.07 µM). This inhibitory effect was abolished by astressin2B, a CRFR2 antagonist, and was blocked by GDP-β-S, pertussis toxin, or a selective antibody raised against the Goα. Inhibition of phospholipase C (PLC) blocked the inhibitory action of UCN2. The application of diacylglycerol (DAG) antagonist, 1-hexadecyl-2-acetyl-sn-glycerol, as well as inhibition of either protein kinase C or its epsilon isoform (PKCε) abolished the UCN2 effect while 1-oleoyl-2-acetyl-sn-glycerol (EI-150), a membrane-permeable DAG analogue, occluded UCN2-mediated inhibition. In addition, UCN2 significantly increases spontaneous firing frequency of Purkinje neurons in cerebellar slices. In summary, activation of CRFR2 inhibits P-currents in Purkinje neurons via Goα-dependent PLC/PKCε pathway, which might contribute to its physiological functions in the cerebellum.  相似文献   

18.
Abstract: Levels of the guanine nucleotide binding proteins G11α and Gqα, which produce receptor regulation of phosphoinositidase C., were measured immunologically in 13 regions of rat central nervous system. This was achieved by immunoblotting membranes from these regions with antisera (CQ series) that identify these two polypeptides equally, following separation of the membranes using sodium dodecyl sulphate-polyacrylamide gel electrophoresis conditions that can resolve Gqα and G11α. In all regions examined, Gqα was more highly expressed than G11α. Ratios of levels of Gqα to G11α varied between the regions from 5:1 to 2:1. Quantitative measurements of the levels of Gqα and G11α in each region were obtained by comparison with known amounts of purified liver Gqα and G11α and with E. coli expressed recombinant Gqα. Areas that expressed Gqα highly included olfactory bulb (930 ng/ mg of membrane protein), frontal cortex (700 ng/mg of membrane protein), parietal occipital cortex (670 ng/mg of membrane protein), caudate putamen (1,003 ng/mg of membrane protein), hippocampus (1,045 ng/mg of membrane protein), hypothalamus (790 ng/mg of membrane protein), and cerebellum (950 ng/mg of membrane protein). More modest levels were observed in thalamus (450 ng/mg of membrane protein), pituitary (480 ng/mg of membrane protein), optic chiasma (330 ng/mg of membrane protein), and spinal cord (350 ng/mg of membrane protein). Gna was more evenly expressed with values ranging from about 170 ng/mg of membrane protein in spinal cord and optic chiasma to close to 300 ng/mg of membrane protein in regions expressing high levels of Gqα. A third polypeptide could be identified by the CQ antisera in all brain regions. The possibility that this polypeptide is the α subunit of G14 is discussed.  相似文献   

19.
Modulation of the Ca- and voltage-dependent K channel—KCa—by receptors coupled to the G proteins G i /G o and G s has been studied in insulin-secreting cells using the patch clamp technique. In excised outside-out patches somatostatin (somatotropin-releasing inhibitory factor; SRIF) caused concentration-dependent inhibition of the KCa channel, an effect that was prevented by pertussis toxin (PTX). In inside-out patches, exogenous subunits of either G i or G o -type G proteins also inhibited the KCa channel (IC50 5.9 and 5.7 pM, respectively). These data indicate that SRIF suppresses KCa channel activity via a membrane-delimited pathway that involves the subunits of PTX-sensitive G proteins G i and/or G o . In outside-out patches, activation of G s either by -agonists or with cholera toxin (CTX) increased KCa channel activity, consistent with a membrane-delimited stimulatory pathway linking the -adrenergic receptor to the KCa channel via G s . In outside-out patches, channel inhibition by SRIF suppressed the stimulatory effect of -agonists but not that of CTX, while in inside-out patches CTX reversed channel inhibition induced by exogenous i or o . Taken together these data suggest that KCa channel activity is enhanced by activation of G s and blocked by activated G i and/or G o . Further, KCa channel stimulation by activated G s may be direct, while inhibition by G i /G o may involve deactivation of G s . In inside-out patches KCa channel activity was reduced by an activator of protein kinase C (PKC) and enhanced by inhibitors of PKC, indicating that PKC also acts to inhibit the KCa channel via a membrane delimited pathway. In outside-out patches, chelerythrine, a membrane permeant inhibitor of PKC prevented the inhibitory effect of SRIF, and in inside-out patches PKC inhibitors prevented the inhibitory effect of exogenous i or o . These data indicate that PKC facilitates the inhibitory effect of the PTX-sensitive G proteins which are activated by coupling to SRIF receptors. To account for these results a mechanism is proposed whereby PKC may be involved in G i /G o -induced deactivation of G s .The authors would like to thank Dr. S. Ciani for many helpful discussions, Dr. A.E. Boyd III for supplying the HIT cells, Drs. J. Codina and L. Birnbaumer for supplying the alpha subunits of the G proteins G i and G o , and Mrs. Satoko Hagiwara for preparing and maintaining the cell cultures.This work was supported by grant DCB-8919368 from the National Science Foundation and a research grant (W-P 880513) from the American Diabetes Association to B.R., and by grant RO1-DK39652 from the National Institutes of Health to G.T.E.  相似文献   

20.
Abstract: There is debate about the mechanisms mediating adenosine release from neurons. In this study, the release of adenosine evoked by depolarizing cultured cerebellar granule neurons with 50 mM K+ was inhibited by 49 ± 7% in Ca2+-free medium. The remaining release was blocked by dipyridamole (IC50 = 6.4 × 10?8M) and nitrobenzylthioinosine (IC50 = 3.6 × 10?8M), inhibitors of adenosine uptake. Ca2+-dependent release was reduced by 78 ± 9% following a 21-h pretreatment of the cells with pertussis toxin, which ADP-ribosylates Gi/Go G proteins, thereby preventing their dissociation. The nucleoside transporter-mediated component of K+-induced adenosine release also was inhibited by 62 ± 8% by pertussis toxin and was potentiated by 78 ± 11% following cholera toxin treatment, which permanently activates Gs. Uptake of [3H]adenosine into cultured cerebellar granule neurons over a 10-min period was not dependent on extracellular Na+ but was reduced by dipyridamole (IC50 = 3.2 × 10?8M) and nitrobenzylthioinosine (IC50 = 2.6 × 10?8M). Thus, adenosine uptake likely occurs via the same transporter mediating Ca2+-independent adenosine release. Adenosine uptake was potentiated by cholera toxin pretreatment (152 ± 15% of control), but pertussis toxin had no statistically significant effect. It is possible that Gs, Gi/Go, or free Gβγ dimer modulate the equilibrative, inhibitor-sensitive nucleoside carrier to enhance adenosine transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号