首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Saalbach G  Erik P  Wienkoop S 《Proteomics》2002,2(3):325-337
The legume Rhizobium symbiosis leads to the formation of a new compartment in the plant cell, the symbiosome. This compartment harbours the bacteroids surrounded by a peribacteroid membrane (PBM) originating from the plant plasma membrane. The PBM and the space between the PBM and the bacteroid membrane, called peribacteroid space (PS), mediate the exchange of metabolites between the symbionts. Proteome analysis was used as an approach to characterise the proteins in the PBM and the PS. A standard differential centrifugation procedure including a Percoll gradient was used for symbiosome isolation from pea root nodules. Proteins in the PBM and PS fractions obtained from the symbiosomes were separated by two-dimensional gel electrophoresis, and 89 spots were analysed by tandem mass spectrometry. The proteins of 46 spots could be identified by database search. The results showed that PS and even PBM preparations from pea symbiosomes always contain abundant amounts of bacteroid proteins as a contaminate. Interestingly, in addition to a few PS/PBM proteins a number of endomembrane proteins (less likely representing a contaminate), including V-ATPase, BIP, and an integral membrane protein known from COPI-coated vesicles, were found in the PBM fraction, supporting the role of the endomembrane system in PBM biogenesis.  相似文献   

2.
The peribacteroid membrane (PBM) of symbiosomes from pea root nodules developed in the presence of boron (+B) was labelled by anti-rhamnogalacturonan II (RGII) (anti-rhamnogalacturonan II pectin polysaccharide) antiserum. However, in nodules from plants grown at low boron (-B), anti-RGII pectin polysaccharide did not stain PBMs. Given that RGII pectin binds to borate, and that symbiosomes differentiate aberrantly in -B nodules because of abnormal vesicle traffic, anti-RGII pectin polysaccharide antigens were further analysed. Following electrophoresis and electroblotting, anti-RGII pectin polysaccharide immunostained three bands in +B but not in -B nodule-derived PBMs. A similar banding pattern was observed after the immunostaining of membrane fractions from uninfected roots, indicating that anti-RGII pectin polysaccharide antigens are common to both peribacteroid and plasma membranes. Protease treatment of samples led to disappearance of anti-RGII pectin polysaccharide labelling, indicating that the three immunostained bands correspond to proteins or glycoproteins. The immunochemical study of RGII antigen distribution during nodule development showed that it is strongly present on the PBM of dividing (undifferentiated) symbiosomes but progressively disappeared during symbiosome maturation. In B-deficient nodules, PBMs were never decorated with RGII antigens, and there was an abnormal targeting of vesicles containing pectic polysaccharide (homogalacturanan) to cell membranes. Overall, these results indicate that RGII, boron and certain membrane (glyco)-proteins may interact closely and function cooperatively in membrane processes associated with symbiosome division and general cell growth.  相似文献   

3.
Summary Using a series of antibody probes as markers of symbiosome development, we have investigated the impaired development of symbiosomes in nodules formed by the plant mutant line Sprint2Fix (sym31). In wild-type pea (Pisum sativum L.) nodules, bacteria differentiate into large pleiomorphic, nitrogen-fixing bacteroids and are singly enclosed within a peribacteroid membrane. In thesym31 mutant, several small undifferentiated bacteroids were often enclosed within one peribacteroid membrane, or were found within a vacuole-like compartment. In wild-type nodules, the monoclonal antibody JIM18, which recognizes a plasmalemma glycolipid antigen, bound to the juvenile peribacteroid membrane, and did not recognize the mature peribacteroid membrane. However, in the mutant, the antibody bound to all peribacteroid membranes within the nodule, suggesting that differentiation of the peribacteroid membrane was arrested. Another antibody, MAC266, recognized plant glycoproteins which normally accumulate in symbiosomes at a late stage of nodule development. Binding of this antibody was much reduced within mutant nodules, labelling only a few mature cells. Similarly, MAC301, which normally recognizes a lipopolysaccharide epitope expressed on differentiated bacteroids prior to the induction of nitrogenase, failed to react with rhizobial cell extracts isolated from nodules of thesym31 mutant. On the basis of these developmental markers, the symbiosomes ofsym31 nodules appeared to be blocked at an early stage of development. The distribution of infection structures was also found to be abnormal in the mutant nodules. Models of symbiosome development are presented and discussed in relation to the morphological and developmental lesions observed in thesym31 mutant.  相似文献   

4.
Samples of Rhizobium bacteroids isolated from pea nodule symbiosomes reacted positively with a monoclonal antibody recognizing N-linked glycan epitopes on plant glycoproteins associated with the peribacteroid membrane and peribacteroid fluid. An antiserum recognizing the symbiosomal lectin-like glycoprotein PsNLEC-1 also reacted positively. Samples of isolated bacteroids also reacted with an antibody recognizing a glycolipid component of the peribacteroid membrane and plasma membrane. Bacterial cells derived from free-living cultures then were immobilized on nitrocellulose sheets and tested for their ability to associate with components of plant extracts derived from nodule fractionation. A positive antibody-staining reaction indicated that both PsNLEC-1 and membrane glycolipid had become associated with the bacterial surface. A range of rhizobial strains with mutants affecting cell surface polysaccharides all showed similar interactions with PsNLEC-1 and associated plant membranes, with the exception of strain B659 (a deep-rough lipopolysaccharide mutant of Rhizobium leguminosarum). However, the presence of a capsule of extracellular polysaccharide apparently prevented interactions between rhizobial cells and these plant components. The importance of a close association between peribacteroid membranes, PsNLEC-1, and the bacterial surface is discussed in the context of symbiosome development.  相似文献   

5.
Three rat hybridoma lines that produced monoclonal antibodies reacting with the peribacteroid membrane from Pisum sativum were isolated, and these all appeared to recognize the same antigenic structure. Using one of these monoclonal antibodies, AFRC MAC 64, electron microscopy of immunogold-stained thin sections of nodule tissue revealed that the antigen, present in the peribacteroid membrane, was also found in the plant plasma membranes and in the Golgi bodies, but not in the endoplasmic reticulum. When peribacteroid membrane proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose by electro-blotting, it was found that MAC 64 bound to a series of protease-sensitive bands that migrated in the mol. wt. range 50-85 K. The epitope was sensitive to periodate oxidation and its structure may therefore involve the carbohydrate component of a membrane glycoprotein. We suggest that this structure originates in the Golgi apparatus and is subsequently transferred to the peribacteroid membranes and plasma membranes. The monoclonal antibody also reacted with peribacteroid membranes from nodules of Vicia and lupin, and with plasma membranes and Golgi membranes from uninfected plant cells, including root tip cells from onion (Allium cepa), indicating that the antigen is highly conserved in the plasma membranes of plant cells.  相似文献   

6.
An antiserum raised against deglycosylated hydroxyproline-rich glycoproteins (HPGPs) from melon (Cucumis melo L.) was used to study the relationship between Rhizobium infection and induction of HRGPs in bean (Phaseolus vulgaris L.) root nodule cells infected with either the wild-type or a C4-dicarboxylic acid mutant strain of Rhizobium leguminosarum bv. phaseoli. In effective nodules, where fixation of atmospheric dinitrogen is taking place, HRGPs were found to accumulate mainly in the walls of infected cells and in peribacteroid membranes surrounding groups of bacteroids. Internal ramifications of the peribacteroid membrane were also enriched in HRGPs whereas the peribacteroid space as well as the bacteroids themselves were free of these glycoproteins. In mutant-induced root nodules, HRGPs were specifically associated with the electron-dense, laminated structures formed in plastids as a reaction to infection by this mutant. The presence of HRGPs was also detected in the host cytoplasm. The aberrant distribution of HRGPs in infected cells of mutant-induced nodules likely reflects one aspect of the altered host metabolism in relation to peribacteroid-membrane breakdown. The possibility that the antiserum used for HRGP localization may have cross-reacted with ENOD 2 gene products is discussed in relation to amino-acid sequences and sites of accumulation.  相似文献   

7.
The effects of glyphosate on protein metabolism, mesophyll cell ultrastructure and nodule ultrastructure and functioning of Lupinus albus cv. Multolupa inoculated with Bradyrhizobium sp. (Lupinus) were investigated. Young leaves and nodules were especially affected because these organs act as sinks of the herbicide. The alterations on nodular and chloroplast ultrastructure varied depending on herbicide concentration and time of exposure. After 3 days of 2.5 mM glyphosate application some toxic effects were detected. The most important alterations on nodules were the progressive cellular degradation of plant and bacteroidal cytosol and the rupture of bacteroidal membrane, whilst the peribacteroid membrane of the symbiosomes was preserved. This is the first report on the effect of glyphosate on legume-nodule ultrastructure. Glyphosate inhibited B. sp. (Lupinus) growth at concentrations higher than 62.5 microM. In the mesophyll cells, gradual disorganization of grana and intergrana was observed, loosing the parallel alignment with the chloroplast axis. As in nodules, degradation of membrane systems was observed, with the deformation, and even the rupture, of the tonoplast. These progressive effects were similar to those described in senescence processes. The adverse effects produced on infected zone can be due both to a direct effect of the herbicide on microsymbiont and to an indirect effect of glyphosate action on photosynthetic apparatus. Glyphosate produced changes in nodule cytosol and bacteroid proteins content and polypeptide pattern of leaves and nodules. With respect to proteins related to the oxygen diffusion mechanism, a large decrease in leghemoglobin and glycoproteins (recognized by antibodies MAC236 and MAC265) content was detected, which suggests that the oxygen diffusion mechanisms were also affected by glyphosate.  相似文献   

8.
A unique feature of the symbiotic association between legume plants and rhizobia is the plant-derived membrane which separates the symbionts within root nodule; this membrane is termed the peribacteroid membrane (PBM). Although this membrane plays a vital role in facilitating transport and other processes in nodules, little is known about the proteins that are associated with and are an integral part of it. The objective of this work was to apply modern methods of protein purification to the characterisation of proteins of peribacteroid membrane from nodules of yellow lupine (Lupines luteus). The 17-kDa protein was isolated from purified peribacteroid membrane using size exclusion and ion exchange chromatography (FPLC). The N-terminal amino acid sequence of this protein was determined; the sequence does not match any of the previously reported lupine and other legume sequences. Following detergent solubilisation of purified peribacteroid membrane, integral proteins of 15 to 20 kDa were purified by size exclusion chromatography.  相似文献   

9.
Iron Uptake by Symbiosomes from Soybean Root Nodules   总被引:26,自引:2,他引:24       下载免费PDF全文
To identify possible iron sources for bacteroids in planta, soybean (Glycine max L. Merr.) symbiosomes (consisting of the bacteroid-containing peribacteroid space enclosed by the peribacteroid membrane [PBM]) and bacteroids were assayed for the ability to transport iron supplied as various ferric [Fe(III)]-chelates. Iron presented as a number of Fe(III)-chelates was transported at much higher rates across the PBM than across the bacteroid membranes, suggesting the presence of an iron storage pool in the peribacteroid space. Pulse-chase experiments confirmed the presence of such an iron storage pool. Because the PBM is derived from the plant plasma membrane, we reasoned that it may possess a ferric-chelate reductase activity similar to that present in plant plasma membrane. We detected ferric-chelate reductase activity associated with the PBM and suggest that reduction of Fe(III) to ferrous [Fe(II)] plays a role in the movement of iron into soybean symbiosomes.  相似文献   

10.
Abstract Symbiotic association Rhizobium astragali with barley roots was induced by a permanent magnetic field. Initially root hairs were deformed. Later, pseudonodules were formed, showing infected cells with infection threads, and bacteroids each enclosed within a peribacteroid membrane. The overall picture is similar to that of legume root nodules. No acetylene reduction activity could be detected in pseudonodules.  相似文献   

11.
Previously, we determined the N-terminal amino acid sequences of a number of putative peribacteroid membrane proteins from soybean. Here, we report the cloning of a gene, GmN6L, that encodes one of these proteins. The protein encoded by GmN6L is similar in sequence to MtN6, an early nodulin expressed in Medicago truncatula roots in response to infection by Sinorhizobium meliloti. The GmN6L gene was strongly expressed in mature nodules but not in other plant organs. GmN6L protein was first detected 2 weeks after inoculation with Bradyrhizobium japonicum and was limited to the infected zone of nodules. GmN6L protein was found in symbiosomes isolated from mature soybean nodules, both as a soluble protein and as a peripheral membrane protein bound to the peribacteroid membrane. These data indicate that GmN6L is a late nodulin, which is not involved in the infection process. Homology between GmN6L and FluG, a protein involved in signaling in Aspergillus nidulans, suggests that GmN6L may play a role in communication between the host and microsymbionts during symbiotic nitrogen fixation.  相似文献   

12.
Treatment of root nodules or symbiosomes isolated from them with calcium chelator EGTA alone or together with calcium ionophore A23187 for 3 h under microaerophilic conditions considerably decreased their nitrogenase activity (NA). Under these experimental conditions, cytochemical electron-microscopic analysis revealed considerable calcium depletion of symbiosomes in the infected nodule cells treated with EGTA and A23187. Ca2+ channel blockers, verapamil and ruthenium red, inhibited EGTA-induced Ca2+ release from symbiosomes. In this case, NA insignificantly increased in the whole nodules and reached its initial level in symbiosomes. The experiments on isolated symbiosomes with arsenazo III, a Ca2+ indicator, demonstrated that verapamil inhibited Ca2+ release from them induced by valinomycin in the presence of K+ ions. These data suggest the presence on the peribacteroid membrane of a verapamil-sensitive transporter responsible for Ca2+ release from symbiosomes. A possible role of this transporter in the interaction between symbiotic partners in the infected cells of root nodules is discussed.  相似文献   

13.
Proteins in the peribacteroid space (PBS) between the bacteroid outer membrane and the peribacteroid membrane in root nodules of Pisum sativum and Vicia faba induced by Rhizobium leguminosarum PRE were analysed by two-dimensional (2-D) gel electrophoresis. Most of the detectable proteins were found to migrate to identical positions; however the level of accumulation of some of these appear to be determined by the host plant. When a different R. leguminosarum strain (RB1) was used to inoculate P. sativum , the majority of the isolated PBS proteins were found to migrate in the 2-D gel to identical positions as those of the other two combinations ( R. leguminosarum PRE x P. sativum and R. leguminosarum PRE x V. faba ).  相似文献   

14.
Nodule-specific root proteins – so called nodulins – were identified in root nodules of pea plants by an immunological assay. Nodulin patterns were examined at different stages of nodule development. About 30 nodulins were detectable during development. Some were preferentially synthesized before nitrogen fixation started, whereas the majority were synthesized concomitantly with leghaemoglobin. Some of the nodulins were located within the peribacteroid membrane. Ineffective Rhizobium strains (a natural nod+fix- and a pop -fix-) appeared to be useful in studying the expression of nodulin genes. Synthesis of some nodulins was repressed in ineffective root nodules, indicating that nodulins are essential for the establishment of nitrogen fixation. In both types of ineffective root nodules, leghaemoglobin synthesis was not completely repressed. Low amounts of leghaemoglobin were always detected in young ineffective root nodules whereas in old nodules no leghaemoglobin was present.  相似文献   

15.
Based on electron microscopic studies and visualization of calcium with the Ca indicator pyroantimonate, it was established that a prolonged incubation of the bean (Vicia faba L.) root nodules and isolated symbiosomes in EGTA-containing buffer depletes calcium in these nitrogen-fixing units. Other experiments demonstrated that the induction of calcium deficit in symbiosomes both in vivo and in vitro substantially decreases their nitrogenase activity. The addition of verapamil and ruthenium red, well-known inhibitors of Ca2+ channels, to the suspension of root nodules largely prevented both the EGTA-induced calcium efflux from the symbiosomes and the decrease in their nitrogenase activity. Similar effects of verapamil were also observed on isolated symbiosomes. The treatment of isolated symbiosomes with valinomycin in the presence of K+ induced a rapid efflux of Ca2+ from symbiosomes; this efflux was strongly inhibited by verapamil. The results present evidence for the existence in the peribacteroid membrane of a Ca2+-transporting system that exports Ca2+ from the symbiosomes.  相似文献   

16.
Szafran MM  Haaker H 《Plant physiology》1995,108(3):1227-1232
Peribacteroid membrane vesicles from pea (Pisum sativum) root nodules were isolated from membrane-enclosed bacteroids by an osmotic shock. The ATPase activity associated with this membrane preparation was characterized, and its electrogenic properties were determined. The pH gradient was measured as a change of the fluorescence intensity of 9-amino-6-chloro-2-methoxyacridine and the membrane potential as a shift of absorbance of bis-(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol. It was demonstrated that the ATPase generates a pH gradient as well as a membrane potential across the peribacteroid membrane. The reversibility of the ATPase was demonstrated by a light-dependent ATP synthesis by peribacteroid membrane vesicles fused with bacteriorhodopsin-phospholipid vesicles. The light-driven ATP synthesis by the peribacteroid membrane ATPase was completely inhibited by a proton-conducting ionophore. The proton-pumping activity of the peribacteroid membrane ATPase could also be demonstrated with peribacteroid membrane-enclosed bacteroids, and effects on nitrogenase activity were established. At pH values below 7.5, an active peribacteroid membrane ATPase inhibited the nitrogenase activity of peribacteroid membrane-enclosed bacteroids. At pH values above 8, at which whole cell nitrogenase activity was inhibited, the protonpumping activity of the peribacteroid membrane ATPase could partially reverse the pH inhibition. Vanadate, an inhibitor of plasma membrane and peribacteroid membrane ATPases, stimulated nodular nitrogenase activity. It will be proposed that the proton-pumping activity of the peribacteroid membrane ATPase in situ is a possible regulator of nodular nitrogenase activity.  相似文献   

17.
Plant and bacterial antigens contributing to nodule development and symbiosis in pea (Pisum sativum L.) roots were identified after isolation of a set of monoclonal antibody (McAb)-producing hybridoma lines. Rats were immunised with the peribacteriod material released by mild osmotic shock treatment from membrane-enclosed bacteroids of Rhizobium leguminosarum bv. viceae. In order to diversify the range of McAb specificities, this material was either used as immunogen directly (method 1), or after immunodepletion of a set of glycoprotein and lipopolysaccharide antigens (method 2), or after deglycosylation (method 3). After fusion and screening of cloned hybridoma lines, these three immunisation methods gave respectively 4, 2 and 1 classes of McAb with unique antigen specificities. Ultrastructural immunogold localisation studies showed four different antigens to be present on peribacteriod and plasma membranes (identified by MAC 64, 202, 206 or 209); in addition, a glycoprotein of plant origin but present in the infection-thread matrix was identified by MAC 204. Although none of the epitopes recognised by these McAb was nodule-specific, several were found to be more abundant in extracts of nodule tissue than in uninfected roots (MAC 64, 202, 204, 206). Two McAb reacted with new bacterial antigens: MAC 203 identified a bacterial antigen expressed upon infection but not in free-living cultures of Rhizobium, and MAC 115 identified a bacterial polypeptide (55 kdaltons) that was present in both free-living and bacteroid forms. There were also some McAb of broader specificity that react with antigens present in both plant and bacterial cytoplasms.Abbreviations ELISA enzyme-linked immunosorbent assay - Ig inmunoglobulin - kDa kilodalton - LPS lipopolysaccharide - McAb monoclonal antibody - PBM peribacteroid membrane - SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis - TFMS trifluoromethane sulfonic acid  相似文献   

18.
Siderophore-bound iron in the peribacteriod space of soybean root nodules   总被引:2,自引:0,他引:2  
Water-soluble, non-leghemoglobin iron (125 µmol kg-1 wet weight nodule) is found in extracts of soybean root nodules. This iron is probably confined to the peribacteroid space of the symbiosome, where its estimated concentration is 0.5 – 2.5 mM. This iron is bound by siderophores (compounds binding ferric iron strongly) which are different for each of the three strains of Bradyrhizobium japonicum with which the plants were inoculated. One of these, that from nodules inoculated with strain CC 705, is tentatively identified as a member of the pseudobactin family of siderophores. Leghemoglobin is present in only very small amounts in the peribacteroid space of symbiosomes isolated from soybean root nodules, and may be absent from the peribacteroid space of the intact nodule.  相似文献   

19.
The capacity of symbiosomes from yellow lupin root nodules for active Ca2+uptake and the sensitivity of their nitrogenase activity to a disturbance of the symbiotic Ca partition were investigated. The experiments carried out on the isolated symbiosomes and the peribacteroid membrane (PBM) vesicles, using Ca2+indicators arsenazo III and chlorotetracycline, and the cytochemical Ca visualization with potassium pyroantimonate (PA) provided evidence that an Mg-ATP-energized pump, most likely Mg2+-dependent Ca2+-ATPase catalyzing the active transport of Ca2+from the cytosol of the plant cell into the symbiosomes across the PBM, functions on this membrane. Depleting the symbiosomes of Ca both in vivoandin vitroby treating the intact nodules of yellow lupin root or the purified symbiosomes isolated from the latter with EGTA and Ca2+-ionophore A23187 substantially decreased their nitrogenase activity. The inhibitory effect of calcium deficit in the symbiosomes was not reversed by the addition of calcium to the incubation medium containing the plant tissues under study and was even enhanced under these conditions. The nitrogenase activity of the isolated symbiosomes not experiencing calcium deficit was also inhibited by the addition of relatively high concentrations of exogenous calcium to the incubation medium. These results seem to give evidence that the calcium status of nodule symbiosomes from yellow lupin roots controls their nitrogenase activity. The data obtained suggest that both Ca2+transport on PBM and the low passive permeability of this membrane for the given cation play the key role in such a control.  相似文献   

20.
Localization of H+-ATPases in soybean root nodules   总被引:1,自引:0,他引:1  
The localization of H+-ATPases in soybean (Glycine max L. cv. Stevens) nodules was investigated using antibodies against both P-type and V-type enzymes. Immunoblots of peribacteroid membrane (PBM) proteins using antibodies against tobacco and Arabidopsis H+-ATPases detected a single immunoreactive band at approximately 100 kDa. These antibodies recognized a protein of similar relative molecular mass in the crude microsomal fraction from soybean nodules and uninoculated roots. The amount of this protein was greater in PBM from mature nodules than in younger nodules. Immunolocalization of P-type ATPases using silver enhancement of colloidal-gold labelling at the light-microscopy level showed signal distributed around the periphery of non-infected cells in both the nodule cortex and nodule parenchyma. In the central nitrogen-fixing zone of the nodule, staining was present in both the infected and uninfected cells. Examination of nodule sections using confocal microscopy and fluorescence staining showed an immunofluorescent signal clearly visible around the periphery of individual symbiosomes which appeared as vesicles distributed throughout the infected cells of the central zone. Electron-microscopic examination of immunogold-labelled sections shows that P-type ATPase antigens were present on the PBM of both newly formed, single-bacteroid symbiosomes just released from infection threads, and on the PBM of mature symbiosomes containing two to four bacteroids. Immunogold labelling using antibody against the B-subunit of V-type ATPase from oat failed to detect this protein on symbiosome membranes. Only a very faint signal with this antibody was detected on Western blots of purified PBM. During nodule development, fusion of small symbiosomes to form larger ones containing multiple bacteroids was observed. Fusion was preceded by the formation of cone-like extensions of the PBM, allowing the membrane to make contact with the adjoining membrane of another symbiosome. We conclude that the major H+-ATPase on the PBM of soybean is a P-type enzyme with homology to other such enzymes in plants. In vivo, this enzyme is likely to play a critical role in the regulation of nutrient exchange between legume and bacteroids. Received: 25 November 1998 / Accepted: 6 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号